1
|
Zhan B, Ren LQ, Zhao J, Zhang H, He C. Catalytic asymmetric C-N cross-coupling towards boron-stereogenic 3-amino-BODIPYs. Nat Commun 2025; 16:438. [PMID: 39762224 PMCID: PMC11704012 DOI: 10.1038/s41467-024-55796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of fluorophores widely utilized in live cell imaging, photodynamic therapy, and fluorescent materials science. Despite the growing demand for optically active BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic asymmetric version, remains a challenge. Herein, we report the synthesis of boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric C-N cross-coupling of prochiral 3,5-dihalogen-BODIPYs. This approach features a broad substrate scope, excellent functional group tolerance, high efficiency, and remarkable enantioselectivities, under mild reaction conditions. Further stereospecific formation of chiral 3,5-diamino-BODIPYs, along with an investigation into the photophysical properties of the resulting optical BODIPYs are also explored. This asymmetric protocol not only enriches the chemical space of chiroptical BODIPY dyes but also contributes to the realm of chiral boron chemistry.
Collapse
Affiliation(s)
- Baoquan Zhan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, China
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Li-Qing Ren
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiayi Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, China.
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Dutta K, Wadawale AP, Mula S. meso-Methyl Amination of BODIPYs by Regiospecific Cross Dehydrogenative Coupling via Direct C(sp 3)-N(sp 3) Bond Formation. Org Lett 2024; 26:7267-7272. [PMID: 38875502 DOI: 10.1021/acs.orglett.4c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Herein, we report a direct meso-methyl amination of BODIPY dyes by C(sp3)-N(sp3) bond formation using PIDA as an oxidant with a wide range of aliphatic secondary amines. This metal free cross dehydrogenative coupling reaction is regiospecific at the meso-methyl position of BODIPY in the presence of C1, C3, C5, and C7 methyl groups. Detailed nuclear magnetic resonance spectroscopy, high-resolution mass spectrometry, and X-ray crystallographic studies were performed to establish the reaction mechanism and the regiospecificity of the reaction. Finally, the photophysical and electrochemical properties of the newly synthesized dyes were evaluated and rationalized.
Collapse
Affiliation(s)
- Kartik Dutta
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Amey P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
3
|
Dong XX, Liu JG, Zhang HX, Zhang B. A Practical and Modular Method for Direct C-H Functionalization of the BODIPY Core via Thianthrenium Salts. Chemistry 2024:e202401929. [PMID: 38818768 DOI: 10.1002/chem.202401929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Direct structural modification of small-molecule fluorophores represents a straightforward and appealing strategy for accessing new fluorescent dyes with desired functionalities. We report herein a general and efficient visible-light-mediated method for the direct C-H functionalization of BODIPY, an important fluorescent chromophore, using readily accessible and bench-stable aryl and alkenylthianthrenium salts. This practical approach operates at room temperature with extraordinary site-selectivity, providing a step-economical means to construct various valuable aryl- and alkenyl-substituted BODIPY dyes. Remarkably, this protocol encompasses a broad substrate scope and excellent functional-group tolerance, and allows for the modular synthesis of sophisticated symmetrical and asymmetrical disubstituted BODIPYs by simply employing different combinations of thianthrenium salts. Moreover, the late-stage BODIPY modification of complex drug molecules further highlights the potential of this novel methodology in the synthesis of fluorophore-drug conjugates.
Collapse
Affiliation(s)
- Xin-Xin Dong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing-Guo Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao-Xiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
4
|
Wang D, Wang L, Guo X, Zhang X, Ma J, Kang Z, Li ZY, Jiao L, Hao E. Visible-Light-Induced Direct Photoamination of BODIPY Dyes with Aqueous Ammonia. Org Lett 2023; 25:7650-7655. [PMID: 37830791 DOI: 10.1021/acs.orglett.3c02962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
By taking advantage of their strong absorption ability, visible-light-induced direct photoamination of BODIPY dyes with aqueous ammonia was developed to give structurally diverse α-amino BODIPYs. The excited state of BODIPYs possessed higher electron affinity than the ground state and thus showed largely enhanced reactivity toward weak nucleophile of ammonia. Those α-amino BODIPYs are valuable synthetic intermediates and have been successfully demonstrated in several post-transformation reactions. The work indicates that photoreaction is an excellent alternative to conventional functionalization of this popular fluorophore.
Collapse
Affiliation(s)
- Dandan Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
- School of Science, Anhui Agriculture University, Hefei 230036, China
| | - Long Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xiankang Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Juan Ma
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Zhengxin Kang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Zhong-Yuan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
5
|
Deng Q, Ding K, Li Y, Jiao Y, Hu R, Zhang T, Wang Z, Tang BZ. Referential modification strategy based on phenolic hydroxyl-containing KSA luminogens for ER-targeting probe construction. Biomaterials 2022; 289:121767. [PMID: 36099711 DOI: 10.1016/j.biomaterials.2022.121767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
Abstract
The endoplasmic reticulum (ER) plays essential roles in various physiological processes and is intimately connected to kinds of diseases. The development of ER-targeting theranostic agents is highly demanded for precise treatments, however, the effective and referential strategies for the construction of ER-targeting probes are limited. Herein, we developed series of ER-targeting luminogens based on keto-salicylaldehyde azine (KSA) framework by introducing phenolic hydroxyl group, which present good theranostic performance with selective enrichment in ER. Under systematical structure modulation, the key role of phenolic hydroxyl group at K-terminal in ER-targeting was experimentally confirmed. Besides, the cyanobenzyl moiety at S-terminal can enhance the luminous efficiency and improve cellular uptake ability. Moreover, the generated reactive oxygen species (ROS) of these KSA derivatives can efficiently trigger ER stress to induce the apoptosis of cancer cells, resulting in the effective inhibition of tumor cells both in vitro and in vivo. Therefore, this feasible modification strategy of inserting phenolic hydroxyl group to common multi-aryl-based luminogens provides a reliable and referential approach for ER-targeting probe establishment.
Collapse
Affiliation(s)
- Qiyun Deng
- Center for Aggregation-Induced Emission, AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, PR China
| | - Keke Ding
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 Zheshan Road, Wuhu, 241001, PR China; Department of Urology, The First Affiliated Hospital of Soochow University, NO. 188 Shizi Road, Suzhou, 215006, PR China
| | - Yin Li
- Center for Aggregation-Induced Emission, AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, PR China
| | - Yawen Jiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Rong Hu
- Center for Aggregation-Induced Emission, AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, PR China; School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, PR China.
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China.
| | - Zhiming Wang
- Center for Aggregation-Induced Emission, AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, PR China.
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, PR China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| |
Collapse
|
6
|
Lv F, Li H, Wu Q, Guo X, Zhang H, Yu C, Jiao L, Hao E. Silver-mediated, direct phosphorylation of BODIPY dyes at the 3- or 3,5-positions with H-phosphonates. Chem Commun (Camb) 2022; 58:3937-3940. [PMID: 35244131 DOI: 10.1039/d2cc00297c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A direct and regioselective C-H/P-H cross-coupling of dialkyl phosphites, and diphenylphosphine oxide to easily available BODIPYs through an Ag-mediated radical addition, resulted in a series of new α-phosphorylated BODIPY fluorophores under mild conditions. Hydrolysis of the phosphonate gave the corresponding BODIPY phosphoric acid, which is soluble and fluorescent in water with a high quantum yield of 0.83.
Collapse
Affiliation(s)
- Fan Lv
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China. .,Department of Chemistry, WanNan Medical College, Wuhu, 241000, China
| | - Heng Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Hongtao Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
7
|
Zhang H, Guo Q, Cheng H, Ran C, Wu D, Lan J. An umpolung strategy for rapid access to thermally activated delayed fluorescence (TADF) materials based on phenazine. Chem Commun (Camb) 2022; 58:1581-1584. [PMID: 35018392 DOI: 10.1039/d1cc06705b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Herein, Ag(I)-promoted regioselective intramolecular radical nucleophilic addition/rearrangement of 2-aryl diazaboroles has been accomplished for the first time to construct phenazine structures. This protocol is an umpolung strategy based on the classical electrophilic mechanism, and therefore, a reversed regioselectivity was observed, which provides an opportunity to prepare sterically hindered phenazines. The resulting thermally activated delayed fluorescence (TADF) materials based on phenazine exhibit emission bands from green to red with high quantum yields and moderate fluorescence lifetimes as solid films.
Collapse
Affiliation(s)
- Huaxing Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Qiang Guo
- College of Optoelectronic Engineering, Chengdu University of Information Technology, 24 Xuefu Road, Chengdu 610225, P. R. China
| | - Hu Cheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Chunhao Ran
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Di Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| |
Collapse
|
8
|
Liu BK, Teng KX, Niu LY, Yang QZ. Progress in the Synthesis of Boron Dipyrromethene (BODIPY) Fluorescent Dyes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Li H, Lv F, Guo X, Wu Q, Wu H, Tang B, Yu C, Wang H, Jiao L, Hao E. Direct C–H alkoxylation of BODIPY dyes via cation radical accelerated oxidative nucleophilic hydrogen substitution: a new route to building blocks for functionalized BODIPYs. Chem Commun (Camb) 2021; 57:1647-1650. [DOI: 10.1039/d0cc07961h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient C–H alkoxylation reaction between BODIPY dyes and a variety of alcohols was developed via a cation radical accelerated oxidative nucleophilic hydrogen substitution.
Collapse
|
10
|
Wang D, Guo X, Wu H, Wu Q, Wang H, Zhang X, Hao E, Jiao L. Visible Light Excitation of BODIPYs Enables Dehydrogenative Enamination at Their α-Positions with Aliphatic Amines. J Org Chem 2020; 85:8360-8370. [DOI: 10.1021/acs.joc.0c00620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dandan Wang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hao Wu
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Hua Wang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xiankang Zhang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
11
|
Frank F, Alice LM, Mauker P, Alsimaree AA, Waddell PG, Probert MR, Penfold TJ, Knight JG, Hall MJ. Synthesis of 3,5-dichloro-4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) via Cu(OTf)2 mediated oxidative nucleophilic substitution of hydrogen by chloride. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Yang Y, Zhang D, Vessally E. Direct Amination of Aromatic C-H Bonds with Free Amines. Top Curr Chem (Cham) 2020; 378:37. [PMID: 32236795 DOI: 10.1007/s41061-020-0300-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/07/2020] [Indexed: 02/01/2023]
Abstract
Aromatic amines belong to a highly important class of organic compounds which are found in various natural products, functional materials, and pharmaceutical agents. Their prevalence has sparked continuing interest in the development of highly efficient and environmentally benign synthetic strategies for the construction of these compounds. Cross-dehydrogenative coupling reactions between two unmodified C(X)-H bonds have recently emerged as a versatile and powerful strategy for the fabrication of new C(X)-C(X) bonds. In this context, several procedures have been reported for the synthesis of aromatic amines through the direct amination of aromatic C-H bonds with free amines. This review highlights recent advances and progress in this appealing research arena, with special emphasis on the mechanistic features of the reactions.
Collapse
Affiliation(s)
- Yafeng Yang
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dangquan Zhang
- School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
13
|
Lv F, Guo X, Wu H, Li H, Tang B, Yu C, Hao E, Jiao L. Direct sulfonylation of BODIPY dyes with sodium sulfinates through oxidative radical hydrogen substitution at the α-position. Chem Commun (Camb) 2020; 56:15577-15580. [DOI: 10.1039/d0cc07259a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of α-sulfonated BODIPYs were efficiently synthesized from sodium sulfinates via a radical process, and were demonstrated as new fluorescent probes for selective biothiol detection.
Collapse
Affiliation(s)
- Fan Lv
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Hao Wu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Heng Li
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Bing Tang
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| |
Collapse
|
14
|
|
15
|
Sheng W, Lv F, Tang B, Hao E, Jiao L. Toward the most versatile fluorophore: Direct functionalization of BODIPY dyes via regioselective C–H bond activation. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Wang D, Cheng C, Wu Q, Wang J, Kang Z, Guo X, Wu H, Hao E, Jiao L. Visible-Light Excitation of BODIPYs Enables Self-Promoted Radical Arylation at Their 3,5-Positions with Diazonium Salts. Org Lett 2019; 21:5121-5125. [DOI: 10.1021/acs.orglett.9b01722] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dandan Wang
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Cheng Cheng
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Jun Wang
- Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei 230061, China
| | - Zhengxin Kang
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Xing Guo
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Hao Wu
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
17
|
Lv F, Yu Y, Hao E, Yu C, Wang H, Boens N, Jiao L. Highly regioselective α-formylation and α-acylation of BODIPY dyes via tandem cross-dehydrogenative coupling with in situ deprotection. Org Biomol Chem 2019; 17:5121-5128. [PMID: 31073552 DOI: 10.1039/c9ob00927b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A metal-free C-H formylation and acylation of BODIPY dyes using a variety of dioxolane derivatives as aldehyde equivalents is reported, providing a postfunctionalization method for controllable synthesis of BODIPYs with carbonyl groups at 3,5-positions via a radical process. The photophysical properties of resultant dyes from this efficient one-pot, chemo- and site-selective transformation have been studied.
Collapse
Affiliation(s)
- Fan Lv
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| | - Yang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| | - Noёl Boens
- Department of Chemistry, KU Leuven (Katholieke Universiteit Leuven), Celestijnenlaan 200f, 3001 Leuven, Belgium.
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
18
|
Wang J, Li Y, Gong Q, Wang H, Hao E, Lo PC, Jiao L. β-AlkenylBODIPY Dyes: Regioselective Synthesis via Oxidative C-H Olefination, Photophysical Properties, and Bioimaging Studies. J Org Chem 2019; 84:5078-5090. [PMID: 30964680 DOI: 10.1021/acs.joc.9b00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of 2-alkenyl- and 2,6-dialkenylboron dipyrromethene (BODIPY) derivatives were synthesized through Pd(II)-catalyzed regioselective and stereoselective oxidative C-H olefination in one step. The 2-alkenyl BODIPY derivative further reacted with various amines regioselectively at the 5-position through direct oxidative nucleophilic substitution. The photophysical properties of the 2-alkenyl- and 2,6-dialkenyl-substituted BODIPYs were investigated, which showed great potential in fluorescent bioimaging.
Collapse
Affiliation(s)
- Jun Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Yongxin Li
- Department of Biomedical Sciences , City University of Hong Kong , Kowloon , Hong Kong, S.A.R. China
| | - Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Pui-Chi Lo
- Department of Biomedical Sciences , City University of Hong Kong , Kowloon , Hong Kong, S.A.R. China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| |
Collapse
|
19
|
Wang Z, Cheng C, Kang Z, Miao W, Liu Q, Wang H, Hao E. Organotrifluoroborate Salts as Complexation Reagents for Synthesizing BODIPY Dyes Containing Both Fluoride and an Organo Substituent at the Boron Center. J Org Chem 2019; 84:2732-2740. [DOI: 10.1021/acs.joc.8b03145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhaoyun Wang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Cheng Cheng
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Zhengxin Kang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Wei Miao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Hua Wang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
20
|
Ma F, Zhou L, Liu Q, Li C, Xie Y. Selective Photocatalysis Approach for Introducing ArS Units into BODIPYs through Thiyl Radicals. Org Lett 2019; 21:733-736. [DOI: 10.1021/acs.orglett.8b03954] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fangtao Ma
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Meilong Rd 130, Shanghai 200237, China
| | - Li Zhou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Meilong Rd 130, Shanghai 200237, China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Meilong Rd 130, Shanghai 200237, China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Meilong Rd 130, Shanghai 200237, China
| |
Collapse
|
21
|
Lv F, Tang B, Hao E, Liu Q, Wang H, Jiao L. Transition-metal-free regioselective cross-coupling of BODIPYs with thiols. Chem Commun (Camb) 2019; 55:1639-1642. [DOI: 10.1039/c8cc09821b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transition-metal-free, regioselective C–H/S–H cross-couplings of BODIPYs with thiols provides structurally diverse thiolated BODIPYs via a radical pathway.
Collapse
Affiliation(s)
- Fan Lv
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Bing Tang
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao
- China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| |
Collapse
|
22
|
Clarke RG, Hall MJ. Recent developments in the synthesis of the BODIPY dyes. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Wu X, Qiao K, Qin H, Zhang D, Gao D, Yang Z, Fang Z, Guo K. Silver(i)-mediated oxidative C(sp3)–H amination of ethers with azole derivatives under mild conditions. Org Chem Front 2019. [DOI: 10.1039/c9qo00644c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A silver(i)-mediated oxidative N–H/C(sp3)–H coupling of NH-azoles with ethers has been developed.
Collapse
Affiliation(s)
- Xiaoyu Wu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Kai Qiao
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Hong Qin
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Di Gao
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Zhao Yang
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
24
|
Tang B, Lv F, Chen K, Jiao L, Liu Q, Wang H, Hao E. Development of BODIPY dyes with versatile functional groups at 3,5-positions from diacyl peroxides via Cu(ii)-catalyzed radical alkylation. Chem Commun (Camb) 2019; 55:4691-4694. [DOI: 10.1039/c9cc01602c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A Cu(ii)-catalyzed, α-regioselective C–H alkylation of BODIPY with alkyl diacyl peroxides provides structurally diverse alkylated BODIPYs via a radical pathway.
Collapse
Affiliation(s)
- Bing Tang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Fan Lv
- The Key Laboratory of Functional Molecular Solids, Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Kangkang Chen
- The Key Laboratory of Functional Molecular Solids, Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao
- China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
- China
| |
Collapse
|
25
|
Wang J, Wu Q, Gong Q, Cheng K, Liu Q, Yu C, Hao E, Jiao L. Direct β-Selective Styrylation of BODIPY Dyes via Palladium(II)-Catalyzed C−H Functionalization. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jun Wang
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| | - Qingbao Gong
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| | - Kai Cheng
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering; Shandong University of Science and Technology; Qingdao People's Republic of China
| | - Changjiang Yu
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science; Anhui Normal University; Wuhu 241000 People's Republic of China
| |
Collapse
|
26
|
Lv F, Yu Y, Hao E, Yu C, Wang H, Jiao L, Boens N. Copper-catalyzed α-benzylation of BODIPYs via radical-triggered oxidative cross-coupling of two C–H bonds. Chem Commun (Camb) 2018; 54:9059-9062. [PMID: 30051114 DOI: 10.1039/c8cc04679d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An oxidative cross-dehydrogenative coupling of BODIPYs with toluene and it derivatives has been developed, allowing for the facile synthesis of a broad range of structurally diverse α-benzylated BODIPYs with high solid-state fluorescence.
Collapse
Affiliation(s)
- Fan Lv
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Yang Yu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids
- Ministry of Education
- School of Chemistry and Materials Science
- Anhui Normal University
- Wuhu
| | - Noël Boens
- Department of Chemistry
- KU Leuven (Katholieke Universiteit Leuven)
- 3001 Leuven
- Belgium
| |
Collapse
|