1
|
Wada K, Nagata Y, Cui L, Ono T, Akine S, Ohtani S, Kato K, Fa S, Ogoshi T. Self-Inclusion Complexation of Electron-Accepting Guest into Electron-Donating Cyclic Host by Photoexcitation. Angew Chem Int Ed Engl 2024; 63:e202404409. [PMID: 38609333 DOI: 10.1002/anie.202404409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Self-inclusion complexes consisting of host-guest conjugates are one of the unique supramolecular structures because they form in-state and out-state depending on the external stimuli. Despite many reports of the stimuli-responsive self-inclusion complex formation, study of the structural relaxation from out-state to in-state by photoexcitation has been unexplored. Herein, we report that an electron-donating host and an electron-accepting guest conjugate exhibits the structural relaxation from out-state to in-state by photoexcitation. Formation of the in-state in the excited state resulted in exciplex emission along with the locally excited emission from the out-state. Moreover, this structural relaxation by photoexcitation was suppressed not only by temperature, but also by the presence of guest molecules, resulting in changes in the ratio of the dual emission intensities.
Collapse
Affiliation(s)
- Keisuke Wada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Luxia Cui
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
2
|
Del Mauro A, Kokan Z, Šindelář V. Dynamic [1]rotaxanes via a reversible covalent bond and host-guest anion recognition. Chem Commun (Camb) 2022; 58:3815-3818. [PMID: 35234240 DOI: 10.1039/d2cc00779g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bambus[6]uril-based [1]rotaxanes were formed quantitatively, utilizing a bis(acyloxy)iodate(I) reversible covalent bond and host-guest anion recognition. These novel [1]rotaxanes exhibited a dynamic nature facilitating carboxylate component exchange reactions in acetonitrile.
Collapse
Affiliation(s)
- Arico Del Mauro
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zoran Kokan
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vladimír Šindelář
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
3
|
Miyagishi HV, Masai H, Terao J. Linked Rotaxane Structure Restricts Local Molecular Motions in Solution to Enhance Fluorescence Properties of Tetraphenylethylene. Chemistry 2022; 28:e202103175. [PMID: 34981571 DOI: 10.1002/chem.202103175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 01/02/2023]
Abstract
The restriction of local molecular motions is critical for improving the fluorescence quantum yields (FQYs) and the photostability of fluorescent dyes. Herein, we report a supramolecular approach to enhance the performance of fluorescent dyes by incorporating a linked rotaxane structure with permethylated α-cyclodextrins. Tetraphenylethylene (TPE) derivatives generally exhibit low FQYs in solution due to the molecular motions in the excited state. We show that TPE with linked rotaxane structures on two sides displays up to 15-fold higher FQYs. Detailed investigations with variable temperature 1 H NMR, UV-Vis, and photoluminescence spectroscopy revealed that the linked rotaxane structure rigidifies the TPE moiety and thus suppresses the local molecular motions and non-radiative decay. Moreover, the linked rotaxane structure enhances the FQY of the dye in various solvents, including aqueous solutions, and improves the photostability through the inhibition of local molecular motions in the excited TPE.
Collapse
Affiliation(s)
- Hiromichi V Miyagishi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
4
|
Du XS, Han Y, Chen CF. Helic[6]arene-Based Chiral Pseudo[1]rotaxanes and [1]Rotaxanes. Chemistry 2021; 28:e202104024. [PMID: 34821427 DOI: 10.1002/chem.202104024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 01/23/2023]
Abstract
Chiral pseudo[1]rotaxanes and [1]rotaxanes constructed from macrocyclic arenes still remain a big challenge mainly owing to the lack of such chiral macrocycles. In this work, a new system of chiral pseudo[1]rotaxanes formed by self-inclusion of helic[6]arene containing amide linked with the terminal tertiary amines was first discovered. Based on an atom-economic stopping strategy, a pair of chiral [1]rotaxanes were conveniently obtained in almost quantitative yields by blocking the pseudo[1]rotaxanes with monobenzyl bromide of tetraphenylethene. The structures of pseudo[1]rotaxanes and [1]rotaxanes were characterized by 2D NMR spectra in solution, combined with DFT calculations. The photophysical properties further revealed the efficient chirality transfer of helic[6]arene to the tetraphenylethene moiety, compared to their unthreaded chiral isomers. The discovery of the chiral pseudo[1]rotaxanes allows for a wide and available synthesis of chiral [1]rotaxanes, and also opening a new avenue to the design of chiral supramolecular materials.
Collapse
Affiliation(s)
- Xu-Sheng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Miyagishi HV, Masai H, Terao J. Suppression of Undesirable Isomerization and Intermolecular Reactions of Double Bonds by a Linked Rotaxane Structure. Chem Asian J 2020; 15:1890-1895. [PMID: 32291947 DOI: 10.1002/asia.202000350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/07/2020] [Indexed: 11/11/2022]
Abstract
For luminescent materials, the isomerization and intermolecular reactions of their double bonds are often undesirable because they cause a reduction in the luminescence properties of the π-system. Herein, we report a new methodology to simultaneously prevent isomerization and intermolecular reactions by utilizing the steric effect of a linked rotaxane structure. The ring units are covalently linked in order to prevent any undesired shuttling effect from occurring during isomerization. In addition, the insulated structure provides robust optical properties by prevention of intermolecular reactions. Bulky linked rotaxane structures on both sides of the N=N and C=C double bonds suppress E/Z isomerization; photoluminescence quantum yield (PLQY) measurements reveal that this results in suppression of PLQY reduction caused by isomerization. Moreover, an improvement in the stability under light irradiation and air atmosphere is demonstrated.
Collapse
Affiliation(s)
- Hiromichi V Miyagishi
- Department of Basic Science Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hiroshi Masai
- Department of Basic Science Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Jun Terao
- Department of Basic Science Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
6
|
Masai H, Liu M, Tachibana Y, Tsuda S, Terao J. Synthesis of Insulated Heteroaromatic Platinum-Acetylide Complexes with Color-Tunable Phosphorescence in Solution and Solid States. J Org Chem 2020; 85:3082-3091. [PMID: 31965802 DOI: 10.1021/acs.joc.9b02967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorescence colors of cyclodextrin-based insulated Pt-acetylide complexes were tuned by the molecular engineering of the chromophores. A series of Pt complexes bearing various acetylide ligands, including heteroaromatics, were prepared via self-inclusion of the linked macrocycles with the complexes. The decline in the inclusion efficiency derived from the heteroaromatics was overcome by the late-stage insulation via intramolecular slippage after the construction of the Pt-acetylide complexes. The cyclic protection of the thus-formed complexes prevented phosphorescence quenching via molecular interactions, even in the solid state. Accordingly, the tuned emission colors in a dilute system were replicated in the solid state.
Collapse
Affiliation(s)
- Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Maning Liu
- School of Engineering, RMIT University, Bundoora, Victoria 3083, Australia
| | - Yasuhiro Tachibana
- School of Engineering, RMIT University, Bundoora, Victoria 3083, Australia
| | - Susumu Tsuda
- Department of Chemistry, Osaka Dental University, Osaka 573-1121, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Schröder HV, Schalley CA. Electrochemically switchable rotaxanes: recent strides in new directions. Chem Sci 2019; 10:9626-9639. [PMID: 32110308 PMCID: PMC7020790 DOI: 10.1039/c9sc04118d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Are they still electrifying? Electrochemically switchable rotaxanes are well known for their ability to efficiently undergo changes of (co-)conformation and properties under redox-control. Thus, these mechanically interlocked assemblies represent an auspicious liaison between the fields of molecular switches and molecular electronics. Since the first reported example of a redox-switchable molecular shuttle in 1994, improved tools of organic and supramolecular synthesis have enabled sophisticated new architectures, which provide precise control over properties and function. This perspective covers recent advances in the area of electrochemically active rotaxanes including novel molecular switches and machines, metal-containing rotaxanes, non-equilibrium systems and potential applications.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| | - Christoph A Schalley
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany .
| |
Collapse
|
8
|
Masai H, Terao J. Synthetic Methodologies for Structurally Defined Linked-[n]Rotaxanes with Permethylated Cyclodextrins: Platform for Functionalized Molecular Electronics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180349] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 168-8902, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 168-8902, Japan
| |
Collapse
|
9
|
Russell GM, Inamori D, Masai H, Tamaki T, Terao J. Luminescent and mechanical enhancement of phosphorescent hydrogel through cyclic insulation of platinum-acetylide crosslinker. Polym Chem 2019. [DOI: 10.1039/c9py00700h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An insulated Pt-acetylide complex was incorporated into a polymer network as a crosslinker to afford a phosphorescent gel.
Collapse
Affiliation(s)
- Go M. Russell
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| | - Daiki Inamori
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| | - Hiroshi Masai
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| | - Takashi Tamaki
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| | - Jun Terao
- Department of Basic Science
- Graduate School of Arts and Sciences
- The niversity of Tokyo
- Tokyo 153-8902
- Japan
| |
Collapse
|
10
|
Xu Y, Kaur R, Wang B, Minameyer MB, Gsänger S, Meyer B, Drewello T, Guldi DM, von Delius M. Concave–Convex π–π Template Approach Enables the Synthesis of [10]Cycloparaphenylene–Fullerene [2]Rotaxanes. J Am Chem Soc 2018; 140:13413-13420. [DOI: 10.1021/jacs.8b08244] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Youzhi Xu
- Institute of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ramandeep Kaur
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Bingzhe Wang
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Martin B. Minameyer
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Sebastian Gsänger
- Interdisciplinary Center for Molecular Materials (ICMM) and Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials (ICMM) and Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstraße 25, 91052 Erlangen, Germany
| | - Thomas Drewello
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
11
|
Tian H, Wang C, Lin PH, Meguellati K. Synthesis and characterization of a new pillar[5]arene-based [1]rotaxane. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Reversible and stable redox behavior of a Pt(II) bis(dithiobenzoate)-type complex attributed to rotaxane-based stabilization. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|