1
|
Li X, Hu H, Wang H, Liu J, Jiang W, Zhou F, Zhang J. DNA nanotechnology-based strategies for minimising hybridisation-dependent off-target effects in oligonucleotide therapies. MATERIALS HORIZONS 2025; 12:1388-1412. [PMID: 39692461 DOI: 10.1039/d4mh01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Targeted therapy has emerged as a transformative breakthrough in modern medicine. Oligonucleotide drugs, such as antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), have made significant advancements in targeted therapy. Other oligonucleotide-based therapeutics like clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems are also leading a revolution in targeted gene therapy. However, hybridisation-dependent off-target effects, arising from imperfect base pairing, remain a significant and growing concern for the clinical translation of oligonucleotide-based therapeutics. These mismatches in base pairing can lead to unintended steric blocking or cleavage events in non-pathological genes, affecting the efficacy and safety of the oligonucleotide drugs. In this review, we examine recent developments in oligonucleotide-based targeted therapeutics, explore the factors influencing sequence-dependent targeting specificity, and discuss the current approaches employed to reduce the off-target side effects. The existing strategies, such as chemical modifications and oligonucleotide length optimisation, often require a trade-off between specificity and binding affinity. To further address the challenge of hybridisation-dependent off-target effects, we discuss DNA nanotechnology-based strategies that leverage the collaborative effects of nucleic acid assembly in the design of oligonucleotide-based therapies. In DNA nanotechnology, collaborative effects refer to the cooperative interactions between individual strands or nanostructures, where multiple bindings result in more stable and specific hybridisation behaviour. By requiring multiple complementary interactions to occur simultaneously, the likelihood of unintended partially complementary binding events in nucleic acid hybridisation should be reduced. And thus, with the aid of collaborative effects, DNA nanotechnology has great promise in achieving both high binding affinity and high specificity to minimise the hybridisation-dependent off-target effects of oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Huanhuan Hu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Hailong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Jia Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Wenting Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| |
Collapse
|
2
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Kang Q, Chen B, He M, Hu B. Discrimination of Multiple Homologous Sequences Based on DNA Logic Gate and Elemental Labeling Technology. Anal Chem 2024; 96:6329-6336. [PMID: 38597405 DOI: 10.1021/acs.analchem.3c05915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The simultaneous discrimination of multiple homologous sequences faces challenges due to the high similarity of sequences and the complexity of the discrimination system in most reported works. Herein, a simple and ingenious analysis method was developed to identify eight miRNAs of the let-7 family by combining logic gates and entropy-driven catalytic (EDC)-based lanthanide labeling inductively coupled plasma mass spectrometry (ICP-MS) technology. Specifically, eight miRNAs were first divided into four types according to the difference of bases in the domains 2 and 3 on sequences. To identify the type of targets, a DNA logic gate was constructed with two strand displacement reactions on magnetic beads that could be initiated by different types of targets. Based on the difference of the output signals after two strand displacement reactions, the type of targets was distinguished preliminarily. Then, the discrimination of a specific target was achieved with EDC-based lanthanide labeling ICP-MS detection. By labeling the different magnetic probes with different elemental tags, a specific element signal released from magnetic beads after EDC could be detected by ICP-MS, and therefore, simultaneous detection of homologous sequences was completed. This work provided a novel and simple method for highly specific identification of homologous sequences with the assistance of a logic gate and can promote further development of elemental labeling ICP-MS in the field of multiple analysis.
Collapse
Affiliation(s)
- Qi Kang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Hao H, Li Y, Yang B, Lou S, Guo Z, Lu W. Simulation-Guided Rational Design of DNA Probe for Accurate Discrimination of Single-Nucleotide Variants Based on "Hill-Type" Cooperativity. Anal Chem 2023; 95:2893-2900. [PMID: 36695821 DOI: 10.1021/acs.analchem.2c04446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The accurate discrimination of single-nucleotide variants is of great interest for disease diagnosis and clinical treatments. In this work, a unique DNA probe with "Hill-type" cooperativity was first developed based on toehold-mediated strand displacement processes. Under simulation, this probe owns great thermodynamics advantage for specificity due to two mismatch bubbles formed in the presence of single-nucleotide variants. Besides, the strategies of ΔG' = 0 and more competitive strands are also beneficial to discriminate single-nucleotide variants. The feasibility of this probe was successfully demonstrated in consistent with simulation results. Due to "Hill-type" cooperativity, the probe allows a steeper dynamic range compared with previous probes. With simulation-guided rational design, the resulting probe can accurately discriminate single-nucleotide variants including nucleotide insertions, mutation, and deletions, which are arbitrarily distributed in target sequence. Two specificity parameters were calculated to quantitatively evaluate its good discrimination ability. Hence, "Hill-type" cooperativity can serve as a novel strategy in DNA probe's design for accurate discrimination of single-nucleotide variants.
Collapse
Affiliation(s)
- Huimin Hao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan410005, P. R. China
| | - Ye Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan410005, P. R. China
| | - Bin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan410005, P. R. China
| | - Shuyan Lou
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan410005, P. R. China
| | - Zihua Guo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan410005, P. R. China
| | - Weiyi Lu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan410005, P. R. China
| |
Collapse
|
5
|
Cooperative strand displacement circuit with dual-toehold and bulge-loop structure for single-nucleotide variations discrimination. Biosens Bioelectron 2022; 216:114677. [PMID: 36087401 DOI: 10.1016/j.bios.2022.114677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Nucleic acid nanotechnologies based on toehold-mediated strand displacement are ideally suited for single-nucleotide variations (SNVs) detection. But only a limited number of means could be used to construct selective hybridization probes via finely designed toehold and regulation of branching migration. Herein, we present a cooperative hybridization strategy relying on a dual-toehold and bulge-loop (DT&BL) probe, coupled with the strand displacement catalytic (SDC) cycle to identify SNVs. The dual-toehold can simultaneously hybridize the 5' and 3' ends of the target, so that it possessed the mutual correction function for improving the specificity in comparison with the single target-binding domain. Insertion of BLs into the dual-toehold probe allows tuning of Gibbs free energy change (ΔG) and control of the reaction rate during branching migration. Using the SDC cycle, the reactivity and selectivity of the DT&BL probe were increased drastically without elaborate competitive sequences. The feasibilities of this platform were demonstrated by the identification of three cancer-related genes. Moreover, the applicability of this biosensor to detect clinical samples showed satisfactory accuracy and reliability. We envision it would offer a new perspective for the construction of highly specific probes based on dynamic DNA nanotechnology, and serves as a promising tool for clinical diagnostics.
Collapse
|
6
|
Tang W, Zhang Y, Wang J, Zhao Y, Xu X, Liu C, Liu Y, Zhang X. High-Selectivity Single-Nucleotide Variant Capture Technology Based on the DNA Reaction Network. Anal Chem 2022; 94:5838-5845. [PMID: 35385254 DOI: 10.1021/acs.analchem.1c05280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The extremely low abundance of circulating tumor DNA in blood samples has limited the development of liquid biopsy techniques for the early diagnosis of major diseases. In this study, we demonstrate a DRN-based screening technique, SCREEN, which achieves the specific capture and enrichment of low abundance SNV nucleic acid samples without selective amplification. The SCREEN technique achieved a 108-fold increase in the abundance of single-nucleotide variant (SNV) nucleic acids from highly homologous mixtures (from 0.01% to 1.08%) and has been shown to significantly increase the abundance of SNV nucleic acids from 0.1% to 51% further through two rounds of capture. As a highly effective pre-enrichment technique, SCREEN has demonstrated the ability to enhance NGS in detecting an ultralow abundance SNV nucleic acid powerfully and has high compatibility with existing molecular diagnostic methods.
Collapse
Affiliation(s)
- Weiyang Tang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060.,School of Chemistry Science and Engineering, Tongji University, Shanghai, China, 200092
| | - Yibin Zhang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Jiachun Wang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Yi Zhao
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Xiaoling Xu
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Conghui Liu
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Yizhen Liu
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| | - Xueji Zhang
- Research Center For Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, China, 518060
| |
Collapse
|
7
|
Tan Y, Zhong W, Tang W, Fan J, Zhang X, Guo D, Wu X, Liu Y. Improvement of Molecular Diagnosis Using Domain-Level Single-Nucleotide Variants by Eliminating Unexpected Secondary Structures. Chemistry 2020; 26:16256-16260. [PMID: 32964533 DOI: 10.1002/chem.202003592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 01/06/2023]
Abstract
Identification of single-nucleotide variants (SNVs) is of great significance in molecular diagnosis. The problem that should not be ignored in the identification process is that the unexpected secondary structure of the target nucleic acid may greatly affect the detection accuracy. Herein, we proposed a conditional domain-level SNV diagnosis strategy, in which the subsequent SNV detection can only be carried out after eliminating the unexpected secondary structure of target DNA. Specifically, the target DNA is assembled into a rigid double strand, which makes folding the target DNA difficult and the unexpected secondary structure is eliminated. Based on this double-stranded structure, specially designed probes are used to detect double-stranded properties and report abundant domain-level oligonucleotide information to improve the effective information in the detection results and complete domain-level SNV diagnosis. If the unexpected secondary structure is not eliminated, the detector will first detect it and feed back to us, ensuring the accuracy of the subsequent detection results. With the occurrence (or not) of SNV and the change of the SNV site, in the proof-of-concept experiment, we successfully identified the four homologous sequences to be tested related to BRAF gene.
Collapse
Affiliation(s)
- Yun Tan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Weiye Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Weiyang Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Jin Fan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Xiaohui Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Donghua Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Xiaolong Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| |
Collapse
|
8
|
Zhou QY, Zhong XY, Zhao LL, Wang LJ, Zhou YL, Zhang XX. High-throughput ultra-sensitive discrimination of single nucleotide polymorphism via click chemical ligation. Analyst 2020; 145:172-176. [PMID: 31724655 DOI: 10.1039/c9an01672d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single nucleotide polymorphisms (SNPs) have been proven to be important biomarkers for disease diagnosis, prognosis and disease pathogenesis. Here, taking the advantages of a self-assembled oligonucleotide sandwich structure and robust chemical reactions, we have developed a simple, high-throughput and effective colorimetric analytical technique termed CuAAC-based ligation-assisted assays (CuAAC-LA) for SNP detection using a DNA-BIND 96-well plate. With the 5'-azide and 3'-alkyne groups labelled on two oligonucleotide probes, the target DNA can direct a Cu(i)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction. Since the small difference in duplex stability caused by a single-nucleotide mismatch was amplified by the steric effects of these reactive groups for the ligation reaction of an unstable duplex, CuAAC-LA exhibited an ultra-sensitive discrimination ability for a mutant type target in the presence of large amounts of wild type targets. As low as 0.05% SNP could be clearly detected, which was better than most previously reported methods by various DNA ligases, indicating that a simple and rapid synthetic method i.e., the DNA template-directed click reaction held the potential to replace the ligase for SNP detection.
Collapse
Affiliation(s)
- Qian-Yu Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | |
Collapse
|
9
|
Liu ZJ, Yang LY, Wei QX, Ye CL, Xu XW, Zhong GX, Zheng YJ, Chen JY, Lin XH, Liu AL. A novel ligase chain reaction-based electrochemical biosensing strategy for highly sensitive point mutation detection from human whole blood. Talanta 2020; 216:120966. [PMID: 32456905 DOI: 10.1016/j.talanta.2020.120966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 01/15/2023]
Abstract
Challenged by the detection of trace amounts of mutants and disturbance from endogenous substances in clinical samples, herein, we present a novel electrochemical biosensor based on ligase chain reaction (eLCR) via the thermostable ligase with high mutation recognizing ability. The lengthened double-stranded DNAs exponentially generated via LCR were uniformly distributed on a bovine serum albumin-modified gold electrode, in which the phosphate buffer was tactfully added to remove adsorbed uninterested-probes, and thereafter the amperometry current was collected for the specific binding of streptavidin-poly-HRP and subsequent catalysis in the 3, 3', 5, 5'-tetramethylbenzidine substrate that contained hydrogen peroxide. It found that, under optimized conditions, the proposed biosensor exhibited a high selectivity of mutant targets from the 104-fold excess of co-existent wild targets within a detection limit of 0.5 fM. Impressively, without the involvement of pre-PCR, the homozygous mutants were specifically distinguished from the wild genotype of CYP2C19*2 allele in human whole blood samples. Therefore, the proposed eLCR, due to its advantages in simple primer design, operational ease and ease of miniaturization, has demonstrated its considerable potential for point-of-care testing in the diagnosis of point mutation-related diseases and personalized medicine.
Collapse
Affiliation(s)
- Zhou-Jie Liu
- Department of Pharmacy, Central Laboratory, Fujian Provincial Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Liang-Yong Yang
- Department of Pharmacy, Central Laboratory, Fujian Provincial Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Qing-Xia Wei
- Department of Pharmacy, Central Laboratory, Fujian Provincial Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Chen-Liu Ye
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xiong-Wei Xu
- Department of Pharmacy, Central Laboratory, Fujian Provincial Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Guang-Xian Zhong
- Department of Pharmacy, Central Laboratory, Fujian Provincial Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Yan-Jie Zheng
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jin-Yuan Chen
- Department of Pharmacy, Central Laboratory, Fujian Provincial Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.
| | - Xin-Hua Lin
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
10
|
Kim KT, Winssinger N. Enhanced SNP-sensing using DNA-templated reactions through confined hybridization of minimal substrates (CHOMS). Chem Sci 2020; 11:4150-4157. [PMID: 34122878 PMCID: PMC8152519 DOI: 10.1039/d0sc00741b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
DNA or RNA templated reactions are attractive for nucleic acid sensing and imaging. As for any hybridization-based sensing, there is a tradeoff between sensitivity (detection threshold) and resolution (single nucleotide discrimination). Longer probes afford better sensitivity but compromise single nucleotide resolution due to the small thermodynamic penalty of a single mismatch. Herein we report a design that overcomes this tradeoff. The reaction is leveraged on the hybridization of a minimal substrate (covering 4 nucleotides) which is confined by two guide DNAs functionalized respectively with a ruthenium photocatalyst. The use of a catalytic reaction is essential to bypass the exchange of guide DNAs while achieving signal amplification through substrate turnover. The guide DNAs restrain the reaction to a unique site and enhance the hybridization of short substrates by providing two π-stacking interactions. The reaction was shown to enable the detection of SNPs and SNVs down to 50 pM with a discrimination factor ranging from 24 to 309 (median 82, 27 examples from 3 oncogenes). The clinical diagnostic potential of the technology was demonstrated with the analysis of RAS amplicons obtained directly from cell culture.
Collapse
Affiliation(s)
- Ki Tae Kim
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva 30 quai Ernest Ansermet 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva 30 quai Ernest Ansermet 1211 Geneva Switzerland
| |
Collapse
|
11
|
Tang W, Zhong W, Tan Y, Wang GA, Li F, Liu Y. DNA Strand Displacement Reaction: A Powerful Tool for Discriminating Single Nucleotide Variants. Top Curr Chem (Cham) 2020; 378:10. [PMID: 31894426 DOI: 10.1007/s41061-019-0274-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023]
Abstract
Single-nucleotide variants (SNVs) that are strongly associated with many genetic diseases and tumors are important both biologically and clinically. Detection of SNVs holds great potential for disease diagnosis and prognosis. Recent advances in DNA nanotechnology have offered numerous principles and strategies amenable to the detection and quantification of SNVs with high sensitivity, specificity, and programmability. In this review, we will focus our discussion on emerging techniques making use of DNA strand displacement, a basic building block in dynamic DNA nanotechnology. Based on their operation principles, we classify current SNV detection methods into three main categories, including strategies using toehold-mediated strand displacement reactions, toehold-exchange reactions, and enzyme-mediated strand displacement reactions. These detection methods discriminate SNVs from their wild-type counterparts through subtle differences in thermodynamics, kinetics, or response to enzymatic manipulation. The remarkable programmability of dynamic DNA nanotechnology also allows the predictable design and flexible operation of diverse strand displacement probes and/or primers. Here, we offer a systematic survey of current strategies, with an emphasis on the molecular mechanisms and their applicability to in vitro diagnostics.
Collapse
Affiliation(s)
- Weiyang Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Weiye Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Yun Tan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Guan A Wang
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Feng Li
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada. .,College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China. .,Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Aligner mediated cleavage of nucleic acids for site-specific detection of single base mismatch. Talanta 2019; 201:358-363. [PMID: 31122435 DOI: 10.1016/j.talanta.2019.03.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 01/03/2023]
Abstract
Single base mismatch can always connect with various gene-related diseases, whose determination has aroused widespread interest. So far, various methods have been developed to determine the common base mismatch. However most of them are complex, time-consuming. Herein, we report a novel method, which only need one conventional endonuclease (NEase) and achieve site-specific cleavage in a programmable way, to detect single base mismatch, termed aligner-mediated cleavage-based single base mismatch discrimination (AMCMD). The DNA aligner (DA) is in a stem-loop structure, consistent with an incomplete recognition site of NEase on its stem and a 5'-side arm complementary to the target sequence (TS). Once TS contains matched base and hybridizes with DA, the complete recognition site of NEase is formed, and the TS will be cleavaged with fast speed, while converse is not. Based on it, the method can clearly distinguish mismatched and complementary bases. Without sample pre-processing, we were able to obtain and verify all the test result in about 30 min through the polyacrylamide gel electrophoresis analysis. This endows the proposed method with a simpler advantage. Then we combined AMCMD and EXPAR to create a new method for single base mismatch discrimination, the short sequence obtained by AMCMD as a target to trigger EXPAR, with a detection limit at 1pM level. Another process with human serum underlines that AMCMD is compatible with the complex biological sample, thus it has the potentials for practical applications.
Collapse
|
13
|
Wolfe MG, Ali MM, Brennan JD. Enzymatic Litmus Test for Selective Colorimetric Detection of C-C Single Nucleotide Polymorphisms. Anal Chem 2019; 91:4735-4740. [PMID: 30869875 DOI: 10.1021/acs.analchem.9b00235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A paper based litmus test has been developed using modulation of urease enzyme activity for detection of C-C mismatch single nucleotide polymorphisms (SNPs) by the naked eye. Urease is first inactivated with silver ions and printed onto paper microzones. Addition of DNA containing C-C mismatches reactivates urease via binding of Ag(I), allowing restoration of urease activity, hydrolysis of urea to produce ammonia, and an increase in pH, which is monitored colorimetrically using a pH indicator with a limit of detection of 11 nM DNA in 40 min. The assay system is easy to use, portable, and stable for at least 30 days at ambient temperature. To assess the versatility and practical application of the paper sensor, we used it to identify a G > C transversion present in human genomic DNA from a ductal carcinoma cell line, a mutation commonly found in breast cancer. We believe this new assay system has the potential to be a low-cost method for rapidly identifying DNA with the C-C mismatch SNP as a means of cancer screening in resource-limited areas.
Collapse
Affiliation(s)
- Michael G Wolfe
- Biointerfaces Institute , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4O3 , Canada
| | - M Monsur Ali
- Biointerfaces Institute , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4O3 , Canada
| | - John D Brennan
- Biointerfaces Institute , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4O3 , Canada
| |
Collapse
|
14
|
Liu S, Xin C, Yu X, Ding Z, Liu S. A catalytic DNA circuit-programmed and enzyme-powered autonomous DNA machine for nucleic acid detection. Analyst 2019; 144:5923-5927. [DOI: 10.1039/c9an01568j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A catalytic DNA circuit-programmed and enzyme-powered autonomous DNA machine was proposed for one-step, isothermal and dual-level amplified detection of nucleic acids.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Chen Xin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xiaoxiao Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Zhenbo Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Shufeng Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
15
|
Özay B, Robertus CM, Negri JL, McCalla SE. First characterization of a biphasic, switch-like DNA amplification. Analyst 2018; 143:1820-1828. [PMID: 29577124 PMCID: PMC5969907 DOI: 10.1039/c8an00130h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report the first DNA amplification chemistry with switch-like characteristics: the chemistry is biphasic, with an expected initial phase followed by an unprecedented high gain burst of product oligonucleotide in a second phase. The first and second phases are separated by a temporary plateau, with the second phase producing 10 to 100 times more product than the first. The reaction is initiated when an oligonucleotide binds and opens a palindromic looped DNA template with two binding domains. Upon loop opening, the oligonucleotide trigger is rapidly amplified through cyclic extension and nicking of the bound trigger. Loop opening and DNA association drive the amplification reaction, such that reaction acceleration in the second phase is correlated with DNA association thermodynamics. Without a palindromic sequence, the chemistry resembles the exponential amplification reaction (EXPAR). EXPAR terminates at the initial plateau, revealing a previously unknown phenomenon that causes early reaction cessation in this popular oligonucleotide amplification reaction. Here we present two distinct types of this biphasic reaction chemistry and propose dominant reaction pathways for each type based on thermodynamic arguments. These reactions create an endogenous switch-like output that reacts to approximately 1 pM oligonucleotide trigger. The chemistry is isothermal and can be adapted to respond to a broad range of input target molecules such as proteins, genomic bacterial DNA, viral DNA, and microRNA. This rapid DNA amplification reaction could potentially impact a variety of disciplines such as synthetic biology, biosensors, DNA computing, and clinical diagnostics.
Collapse
Affiliation(s)
- Burcu Özay
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | |
Collapse
|