1
|
Lv X, Huang W, Jiang N, Bao Y, Qu Y, Zou W, Luo Y, Wang L, Shang C. A-D-A type fluorescent probe with dual quaternary-ammonium-salt anchors for turn on detection of HSA in wide emission gamut. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125772. [PMID: 39864182 DOI: 10.1016/j.saa.2025.125772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Human serum albumin (HSA) is a key protein implicates in various physiological and pathological conditions such as renal injury, diabetes mellitus. Herein, we report an AIE-active fluorescent probe (DNI-4) for detection of HSA with a "turn on" response covering visible and near-infrared region (500 - 800 nm). Combining with a triphenylamine and two 1,8-naphthalimide moieties, the chromophore segment of DNI-4 forms a "A-D-A" type molecular architecture with the twisted intramolecular charge transfer property. Two quaternary ammonium salt moieties are introduced into the chromophore to give the probe (DNI-4), which has good hydrophilicity and can interact with HSA to form the dye-HSA aggregates with "turn-on" signal. DNI-4 demonstrates a good linear correlation over a low concentration range of HSA from 0 to 0.2 μM (R2 = 0.9995), with a limit of detection (LOD) as low as 15 nM. We tested the diameters and potential values of DNI-4 and HSA to disclose the variation in microstructure before and after the recognition event. Furthermore, we test and compare the sensitivity and association constants of DNI-4 and two control compounds, neutral DNI-1 and mono-quaternary-ammonium-salt-substituted DNI-5. The results indicate the electronic interaction is a key factor for recognition and DNI-4 with the most positive groups is the best probe for HSA. At last, DNI-4 is successfully applied to probe HSA in the Hela cells indicating the potential application in fluorescent sensing and bioimaging.
Collapse
Affiliation(s)
- Xinyu Lv
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China
| | - Wenling Huang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China
| | - Na Jiang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China
| | - Ying Bao
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China
| | - Yi Qu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China.
| | - Wancheng Zou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122 China
| | - Yuedan Luo
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China
| | - Le Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620 China.
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122 China.
| |
Collapse
|
2
|
Zhu J, Ouyang A, Shen Z, Pan Z, Banerjee S, Zhang Q, Chen Y, Zhang P. Sonodynamic cancer therapy by novel iridium-gold nanoassemblies. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Nishihara R, Niwa K, Tomita T, Kurita R. Coelenterazine Analogue with Human Serum Albumin-Specific Bioluminescence. Bioconjug Chem 2020; 31:2679-2684. [PMID: 33236887 DOI: 10.1021/acs.bioconjchem.0c00536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A synthetic luciferin comprising an imidazopyrazinone core, named HuLumino1, was designed to generate specific bioluminescence with human serum albumin (HSA) in real serum samples. HuLumino1 was developed by attaching a methoxy-terminated alkyl chain to C-6 of coelenterazine and by eliminating a benzyl group at C-8. HSA levels were quantified within 5% error margins of an enzyme-linked immunosorbent assay without the need for any sample pretreatments because of the high specificity of HuLumino1.
Collapse
Affiliation(s)
- Ryo Nishihara
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.,DAILAB, DBT-AIST International Centre for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuki Niwa
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Tatsunosuke Tomita
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.,DAILAB, DBT-AIST International Centre for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Ryoji Kurita
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.,DAILAB, DBT-AIST International Centre for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
4
|
Liang Z, Sun Y, Zeng H, Sun K, Yang R, Li Z, Zhang K, Chen X, Qu L. Simultaneous Detection of Human Serum Albumin and Sulfur Dioxide in Living Cells Based on a Catalyzed Michael Addition Reaction. Anal Chem 2020; 92:16130-16137. [DOI: 10.1021/acs.analchem.0c03806] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zengqiang Liang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Huajin Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ke Zhang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xiaolan Chen
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Lu N, Luo Y, Zhang Q, Zhang P. Microenvironment-sensitive iridium(iii) complexes for disease theranostics. Dalton Trans 2020; 49:9182-9190. [PMID: 32542302 DOI: 10.1039/d0dt01444c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microenvironmental parameters, including hypoxia, pH, polarity, viscosity and temperature, play pivotal roles in controlling the biological, physical or chemical behaviors of local molecules. Abnormal changes in these parameters would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Recently, a number of phosphorescent Ir(iii) complexes have been designed to respond to such parameters due to their attractive properties such as high photostability, long emission lifetimes, and environment-sensitive emission profiles. This review aims to provide a summary of the progress achieved in developing iridium-based probes responding to microenvironmental parameters in biological systems in recent years for diagnosis and treatment of diseases such as cancer and diabetes.
Collapse
Affiliation(s)
- Nong Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Yuheng Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
6
|
Ho PY, Ho CL, Wong WY. Recent advances of iridium(III) metallophosphors for health-related applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213267] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Yuan ZH, Zhang XP, Guan J, Chen LL, Li SK, Liu M, Qin YJ, Yang YS, Zhu HL. Introducing ortho-methoxyl group as a fluorescence-enhancing and bathochromic-shift bi-functional strategy for typical cysteine sensors. Talanta 2020; 219:121217. [PMID: 32887118 DOI: 10.1016/j.talanta.2020.121217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 11/29/2022]
Abstract
A practical strategy of introducing ortho-methoxyl group was explored to achieve the fluorescence-enhancing and bathochromic-shift bi-functional optimization. It was tested in the Cys sensing ISOPH-X series, thus the successful case, ISOPH-2, was obtained. It realized the optimization in a simple and compatible way. The corresponding strategy was basically established during the confirmation of checkpoints including applicable steadiness (over 24 h), wide pH range (7.0-9.0), rapid response (20 min), good biocompatibility, high sensitivity (LOD = 0.072 nm), high selectivity and biological monitoring of Cys in living cells as well as C. elegans. In this work, the o-methoxyl introduction strategy led to a 15 nm red shift and a near 4-fold fluorescence enhancement. This strategy could be combined with the double bond-introducing approach. Compared with reported strategies, by breaking the dilemma between red shift and strong fluorescent intensity, this strategy might offer beneficial information for exploiting better sensors with more fluorophores and mechanisms for their targets.
Collapse
Affiliation(s)
- Zeng-Hui Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xu-Ping Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Guan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Li-Li Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shu-Kai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ming Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ya-Juan Qin
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Xu YJ, Su MM, Li HL, Liu QX, Xu C, Yang YS, Zhu HL. A fluorescent sensor for discrimination of HSA from BSA through selectivity evolution. Anal Chim Acta 2018; 1043:123-131. [DOI: 10.1016/j.aca.2018.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/20/2023]
|
9
|
Ge C, Huang H, Wang Y, Zhao H, Zhang P, Zhang Q. Near-Infrared Luminescent Osmium(II) Complexes with an Intrinsic RNA-Targeting Capability for Nucleolus Imaging in Living Cells. ACS APPLIED BIO MATERIALS 2018; 1:1587-1593. [DOI: 10.1021/acsabm.8b00455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chen Ge
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Huaiyi Huang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, People’s Republic of China
| | - Yi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Hang Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
| |
Collapse
|
10
|
Zhang P, Huang H. Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Trans 2018; 47:14841-14854. [DOI: 10.1039/c8dt03432j] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we summarize recent progress in the design and application of innovative osmium compounds as anticancer agents with diverse modes of action, as organelle-targeted imaging probes and photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|