1
|
Hasanzadeh A, Saeedi S, Dastanpour L, Biabanaki ZS, Asadi L, Noori H, Hamblin MR, Liu Y, Karimi M. Self-replicating nanomaterials as a new generation of smart nanostructures. Biotechnol Adv 2025; 81:108565. [PMID: 40107431 DOI: 10.1016/j.biotechadv.2025.108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Self-replication is the process by which a system or entity autonomously reproduces or generates copies of itself, transmitting hereditary information through its molecular structure. Self-replication can be attractive for various researchers, ranging from biologists focused on uncovering the origin of life, to synthetic chemists and nanotechnologists studying synthetic machines and nanorobots. The capability of a single structure to act as a template to produce multiple copies of itself could allow the bottom-up engineering of progressively complex reaction networks and nanoarchitectures from simple building blocks. Herein, we review nucleic acid-based and amino acid-based self-replicating systems and completely synthetic artificial systems and specially focused on specific aspects of self-replicating nanomaterials. We describe their mechanisms of action and provide a full discussion of the principal requirements for achieving nanostructures capable of self-replication.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Lida Dastanpour
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Zahra S Biabanaki
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Leili Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Center, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Science, Islamic Azad University, Tehran, Iran; Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Howlett MG, Fletcher SP. From autocatalysis to survival of the fittest in self-reproducing lipid systems. Nat Rev Chem 2023; 7:673-691. [PMID: 37612460 DOI: 10.1038/s41570-023-00524-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/25/2023]
Abstract
Studying autocatalysis - in which molecules catalyse their own formation - might help to explain the emergence of chemical systems that exhibit traits normally associated with biology. When coupled to other processes, autocatalysis can lead to complex systems-level behaviour in apparently simple mixtures. Lipids are an important class of chemicals that appear simple in isolation, but collectively show complex supramolecular and mesoscale dynamics. Here we discuss autocatalytic lipids as a source of extraordinary behaviour such as primitive chemical evolution, chemotaxis, temporally controllable materials and even as supramolecular catalysts for continuous synthesis. We survey the literature since the first examples of lipid autocatalysis and highlight state-of-the-art synthetic systems that emulate life, displaying behaviour such as metabolism and homeostasis, with special consideration for generating structural complexity and out-of-equilibrium models of life. Autocatalytic lipid systems have enormous potential for building complexity from simple components, and connections between physical effects and molecular reactivity are only just beginning to be discovered.
Collapse
Affiliation(s)
- Michael G Howlett
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Stephen P Fletcher
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Evolutionary dynamics, evolutionary forces, and robustness: A nonequilibrium statistical mechanics perspective. Proc Natl Acad Sci U S A 2022; 119:e2112083119. [PMID: 35312370 PMCID: PMC9060472 DOI: 10.1073/pnas.2112083119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Evolution through natural selection is an overwhelmingly complex process, and it is not surprising that theoretical approaches are strongly simplifying it. For instance, population genetics considers mainly dynamics of gene allele frequencies. Here, we develop a complementary approach to evolutionary dynamics based on three elements—organism reproduction, variations, and selection—that are essential for any evolutionary theory. By considering such general dynamics as a stochastic thermodynamic process, we clarify the nature and action of the evolutionary forces. We show that some of the forces cannot be described solely in terms of fitness landscapes. We also find that one force contribution can make organism reproduction insensitive (robust) to variations. Any realistic evolutionary theory has to consider 1) the dynamics of organisms that reproduce and possess heritable traits, 2) the appearance of stochastic variations in these traits, and 3) the selection of those organisms that better survive and reproduce. These elements shape the “evolutionary forces” that characterize the evolutionary dynamics. Here, we introduce a general model of reproduction–variation–selection dynamics. By treating these dynamics as a nonequilibrium thermodynamic process, we make precise the notion of the forces that characterize evolution. One of these forces, in particular, can be associated with the robustness of reproduction to variations. Some of the detailed predictions of our model can be tested by quantitative laboratory experiments, similar to those performed in the past on evolving populations of proteins or viruses.
Collapse
|
4
|
Howlett M, Scanes RJH, Fletcher SP. Selection between Competing Self-Reproducing Lipids: Succession and Dynamic Activation. JACS AU 2021; 1:1355-1361. [PMID: 34604845 PMCID: PMC8479773 DOI: 10.1021/jacsau.1c00138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 06/09/2023]
Abstract
Models of chemical evolution are central to advancing origins of life research. To design more lifelike systems, we must expand our understanding of molecular selection mechanisms. Here, we show two selection modes that produce evolving populations of self-reproducing species, formed through thiol-disulfide exchange. Competition between thiol precursors can give clear succession patterns based on steric factors, an intrinsic property. A separate, emergent selection mechanism-dynamic activating metathesis-was found when exploring competing disulfide precursors. These experiments reveal that additional species generated in the mixture open up alternative reaction pathways to form self-reproducing products. Thus, increased compositional complexity provides certain species with a unique competitive advantage at the expense of others.
Collapse
Affiliation(s)
- Michael
G. Howlett
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Oxford OX1 3TA, United Kingdom
| | - Robert J. H. Scanes
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Oxford OX1 3TA, United Kingdom
| | - Stephen P. Fletcher
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
5
|
Abstract
A major goal of synthetic biology is to understand the transition between non-living matter and life. The bottom-up development of an artificial cell would provide a minimal system with which to study the border between chemistry and biology. So far, a fully synthetic cell has remained elusive, but chemists are progressing towards this goal by reconstructing cellular subsystems. Cell boundaries, likely in the form of lipid membranes, were necessary for the emergence of life. In addition to providing a protective barrier between cellular cargo and the external environment, lipid compartments maintain homeostasis with other subsystems to regulate cellular processes. In this Review, we examine different chemical approaches to making cell-mimetic compartments. Synthetic strategies to drive membrane formation and function, including bioorthogonal ligations, dissipative self-assembly and reconstitution of biochemical pathways, are discussed. Chemical strategies aim to recreate the interactions between lipid membranes, the external environment and internal biomolecules, and will clarify our understanding of life at the interface of chemistry and biology.
Collapse
|
6
|
Hanopolskyi AI, Smaliak VA, Novichkov AI, Semenov SN. Autocatalysis: Kinetics, Mechanisms and Design. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anton I. Hanopolskyi
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Viktoryia A. Smaliak
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Alexander I. Novichkov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| | - Sergey N. Semenov
- Department of Organic Chemistry Weizmann Institute of Science Herzl, 234 7610001 Rehovot Israel
| |
Collapse
|
7
|
Post EAJ, Fletcher SP. Dissipative self-assembly, competition and inhibition in a self-reproducing protocell model. Chem Sci 2020; 11:9434-9442. [PMID: 34094210 PMCID: PMC8162124 DOI: 10.1039/d0sc02768e] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
The bottom-up synthesis of artificial, life-like systems promises to enable the study of emergent properties distinctive to life. Here, we report protocell systems generated from phase-separated building blocks. Vesicle protocells self-reproduce through a phase-transfer mechanism, catalysing their own formation. Dissipative self-assembly by the protocells is achieved when a hydrolysis step to destroy the surfactant is introduced. Competition between micelle and vesicle based replicators for a common feedstock shows that environmental conditions can control what species predominates: under basic conditions vesicles predominate, but in a neutral medium micelles are selected for via a mechanism which inhibits vesicle formation. Finally, the protocells enable orthogonal reactivity by catalysing in situ formation of an amphiphilic organocatalyst, which after incorporation into the vesicle bilayer enantioselectively forms a secondary product.
Collapse
Affiliation(s)
- Elias A J Post
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Stephen P Fletcher
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
8
|
Affiliation(s)
- Iuliia Myrgorodska
- University of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Ignacio Colomer
- University of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Stephen P. Fletcher
- University of OxfordChemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
9
|
Kahana A, Schmitt-Kopplin P, Lancet D. Enceladus: First Observed Primordial Soup Could Arbitrate Origin-of-Life Debate. ASTROBIOLOGY 2019; 19:1263-1278. [PMID: 31328961 PMCID: PMC6785169 DOI: 10.1089/ast.2019.2029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/03/2019] [Indexed: 05/02/2023]
Abstract
A recent breakthrough publication has reported complex organic molecules in the plumes emanating from the subglacial water ocean of Saturn's moon Enceladus (Postberg et al., 2018, Nature 558:564-568). Based on detailed chemical scrutiny, the authors invoke primordial or endogenously synthesized carbon-rich monomers (<200 u) and polymers (up to 8000 u). This appears to represent the first reported extraterrestrial organics-rich water body, a conceivable milieu for early steps in life's origin ("prebiotic soup"). One may ask which origin-of-life scenario appears more consistent with the reported molecular configurations on Enceladus. The observed monomeric organics are carbon-rich unsaturated molecules, vastly different from present-day metabolites, amino acids, and nucleotide bases, but quite chemically akin to simple lipids. The organic polymers are proposed to resemble terrestrial insoluble kerogens and humic substances, as well as refractory organic macromolecules found in carbonaceous chondritic meteorites. The authors posit that such polymers, upon long-term hydrous interactions, might break down to micelle-forming amphiphiles. In support of this, published detailed analyses of the Murchison chondrite are dominated by an immense diversity of likely amphiphilic monomers. Our specific quantitative model for compositionally reproducing lipid micelles is amphiphile-based and benefits from a pronounced organic diversity. It thus contrasts with other origin models, which require the presence of very specific building blocks and are expected to be hindered by excess of irrelevant compounds. Thus, the Enceladus finds support the possibility of a pre-RNA Lipid World scenario for life's origin.
Collapse
Affiliation(s)
- Amit Kahana
- Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum Muenchen, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan, Germany
| | - Doron Lancet
- Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Post EJ, Fletcher SP. Controlling the Kinetics of Self-Reproducing Micelles by Catalyst Compartmentalization in a Biphasic System. J Org Chem 2019; 84:2741-2755. [PMID: 30698970 PMCID: PMC6459585 DOI: 10.1021/acs.joc.8b03149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 01/24/2023]
Abstract
Compartmentalization of reactions is ubiquitous in biochemistry. Self-reproducing lipids are widely studied as chemical models of compartmentalized biological systems. Here, we explore the effect of catalyst location on copper-catalyzed azide-alkyne cycloadditions which drive the self-reproduction of micelles from phase-separated components. Tuning the hydrophilicity of the copper-ligand complex, so that hydro-phobic or -philic catalysts are used in combination with hydro-philic and -phobic coupling partners, provides a wide range of reactivity patterns. Analysis of the kinetic data shows that reactions with a hydrophobic catalyst are faster than with a hydrophilic catalyst. Diffusion-ordered spectroscopy experiments suggest compartmentalization of the hydrophobic catalyst inside micelles while the hydrophilic catalyst remains in the bulk aqueous phase. The autocatalytic effects observed can be tuned by varying reactant structure and coupling a hydrophilic alkyne and hydrophobic azide results in a more pronounced autocatalytic effect. We propose and test a model that rationalizes the observations in terms of the phase behavior of the reaction components and catalysts.
Collapse
Affiliation(s)
- Elias
A. J. Post
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| | - Stephen P. Fletcher
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
| |
Collapse
|
11
|
Morrow SM, Colomer I, Fletcher SP. A chemically fuelled self-replicator. Nat Commun 2019; 10:1011. [PMID: 30824804 PMCID: PMC6397266 DOI: 10.1038/s41467-019-08885-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/05/2019] [Indexed: 01/16/2023] Open
Abstract
The continuous consumption of chemical energy powers biological systems so that they can operate functional supramolecular structures. A goal of modern science is to understand how simple chemical mixtures may transition from non-living components to truly emergent systems and the production of new lifelike materials and machines. In this work a replicator can be maintained out-of-equilibrium by the continuous consumption of chemical energy. The system is driven by the autocatalytic formation of a metastable surfactant whose breakdown products are converted back into building blocks by a chemical fuel. The consumption of fuel allows the high-energy replicators to persist at a steady state, much like a simple metabolic cycle. Thermodynamically-driven reactions effect a unidirectional substrate flux as the system tries to regain equilibrium. The metastable replicator persists at a higher concentration than achieved even transiently in a closed system, and its concentration is responsive to the rate of fuel supply.
Collapse
Affiliation(s)
- Sarah M Morrow
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ignacio Colomer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Stephen P Fletcher
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|