1
|
Yao Q, Wu Z, Li J, Hu X, Xu H, Jiang X, Gao Y. Reactive Oxygen Species-Instructed Supramolecular Assemblies Enable Bioorthogonally Activatable Protein Degradation for Pancreatic Cancer. J Am Chem Soc 2025; 147:18208-18218. [PMID: 40372238 DOI: 10.1021/jacs.5c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Proteolysis-Targeting Chimeras (PROTACs) represent a transformative therapeutic platform for targeted protein degradation across diverse disease indications. However, their potent catalytic activity in normal tissues raises significant concerns regarding off-target toxicity. Here, we present a novel supramolecular self-assembly platform for the bioorthogonal control of PROTAC prodrug activation, enabling tumor-specific protein degradation with minimized systemic toxicity. By exploiting the overproduction of reactive oxygen species (ROS) in pancreatic cancer cells, the supramolecular self-assembly approach selectively accumulates bioorthogonal reaction triggers within the targeted malignant cells, which subsequently facilitates the spatiotemporally controlled activation of the bioorthogonally caged PROTAC. This tumor-selective activation mechanism demonstrates enhanced degradation efficiency in pancreatic cancer cells compared to normal cells. In vivo studies reveal potent tumor growth inhibition with complete preservation of major organ histology, confirming the therapeutic index enhancement achieved through a controllable activation strategy. This biomimetic activation platform establishes a generalizable framework for safer PROTAC-based therapies by integrating tumor-specific microenvironmental cues with bioorthogonal reaction engineering.
Collapse
Affiliation(s)
- Qingxin Yao
- State Key Laboratory of Chemical Resource Engineering, MOE Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyang Wu
- State Key Laboratory of Chemical Resource Engineering, MOE Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiaan Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Hu
- State Key Laboratory of Chemical Resource Engineering, MOE Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanlin Xu
- State Key Laboratory of Chemical Resource Engineering, MOE Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuan Gao
- State Key Laboratory of Chemical Resource Engineering, MOE Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Wang J, Gong T, Zhuang Z, Sun B, Zhang FL. Catalyst-free and oxidant-free cyclocondensation of 2-aminobenzamides with glycosides under visible light. Org Biomol Chem 2025; 23:4371-4375. [PMID: 40237193 DOI: 10.1039/d5ob00443h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A convenient and practical method for the mild synthesis of quinazolinones has been developed under visible light at room temperature in the absence of catalysts or additional oxidants. Under very mild reaction conditions, the quinazolinone moiety can be successfully introduced into deoxyuridine and helicid. This method afforded various 5-substituted deoxyuridine analogs and 4-substituted helicid derivatives in moderate to good yields (without column chromatography) across diverse aromatic and aliphatic aldehydes, proving effective for late-stage drug functionalization.
Collapse
Affiliation(s)
- Jian Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Tiancheng Gong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Zirui Zhuang
- Wuhan Britain-China School, Wuhan 430070, P. R. China
| | - Bing Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Fang-Lin Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| |
Collapse
|
3
|
Bharathidasan D, Maity C. Organelle-Specific Smart Supramolecular Materials for Bioimaging and Theranostics Application. Top Curr Chem (Cham) 2024; 383:1. [PMID: 39607460 DOI: 10.1007/s41061-024-00483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
In cellular environments, certain synthetic molecules can form nanostructures via self-assembly, impacting molecular imaging, and biomedical applications. Control over the formation of these self-assembled nanostructures in subcellular organelle is challenging. By the action of stimuli, either present in the cellular environment or applied externally, in situ generation of molecular precursors can lead to accumulation and supramolecular nanostructure formation, resulting in efficient bioimaging. Here, we summarize smart fluorophore-based ordered nanostructure preparation at specific organelles for efficient bioimaging and therapeutic application towards cancer theranostics. We also present challenges and an outlook regarding intercellular self-assembly for theranostics application. Altogether, smart nanostructured materials with fluorescence read-outs at specific subcellular compartments would be beneficial in synthetic biology and precision therapeutics.
Collapse
Affiliation(s)
- Dineshkumar Bharathidasan
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India
| | - Chandan Maity
- (Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology (CNBT), Vellore Institute of Technology (VIT), Vellore Campus, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
4
|
Mei W, Li W, Zhang A. Supramolecular assembly of dendronized diacetylenes into thermoresponsive chiral fibers and their covalent fixation through topochemical polymerization. J Colloid Interface Sci 2024; 669:314-326. [PMID: 38718585 DOI: 10.1016/j.jcis.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/27/2024]
Abstract
By combination of dendritic topological structures with photopolymerizable diacetylene, here we report on supramolecular chiral assembly of the dendronized diacetylenes in water. These dendronized diacetylenes are constituted with three-fold dendritic oligoethylene glycols (OEGs), bridged with a dipeptide from phenylalanine and glycine. These dendronized amphiphiles exhibit intensive propensity to aggregate in water and form helical fibers, which show characteristic thermoresponsive behavior with phase transition temperatures dominated by hydrophilicity of the dendritic OEGs. Topochemical polymerization of these supramolecular fibers through UV irradiation transfers them into the covalent helical dendronized polydiacetylenes. Chirality of these dendronized polydiacetylenes can be mediated through the thermally-induced phase transitions, but is also intriguingly dependent on vortex via stirring. Through stirring the solutions, chiralities of the dendronized polydiacetylenes are inverted, which can be reversibly recovered after keeping still the solution. Hydrogels are formed from these dendronized diacetylenes through concentration-enhanced interactions between the supramolecular fibers. Their mechanical properties can be greatly increased through thermally-enhanced interactions between the fibers with storage moduli increased from 20 Pa to a few hundred Pa. In addition, through photo-polymerization, the supramolecular fibers are transferred into covalent dendronized polydiacetylenes, and the corresponding hydrogels show much improved mechanical properties with storage moduli about 10 kPa.
Collapse
Affiliation(s)
- Wenli Mei
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, Mailbox 152, No. 99 Shangda Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, Mailbox 152, No. 99 Shangda Road, Shanghai 200444, China.
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, Mailbox 152, No. 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
5
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
6
|
Liu C, Li X, Zhu H, Wang K, Rong X, Ma L, Zhang X, Liu M, Li W, Sheng W, Zhu B. A simple mitochondria-immobilized fluorescent probe for the detection of hydrogen peroxide. Talanta 2024; 275:126091. [PMID: 38678922 DOI: 10.1016/j.talanta.2024.126091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
Hydrogen peroxide (H2O2), as one of reactive oxygen species (ROS) widely present in the human body, is involved in a variety of physiological activities. Many human diseases are associated with abnormal levels of H2O2 in the body. Mitochondria are the main organelles producing H2O2 in the human body, and monitoring the level of H2O2 in mitochondria can help to deepen the understanding of the detailed functions of H2O2 in physiological activities. However, due to the highly dynamic nature of the cells, real-time quantitative monitoring of H2O2 levels in mitochondria remains an ongoing challenge. Herein, a novel highly immobilized mitochondria-targeting fluorescent probe (QHCl) for detection of H2O2 was reasonably constructed based on quinolinium dye containing benzyl chloride moiety. Spectral experimental results demonstrated QHCl possessed outstanding selectivity toward H2O2 (λex/em = 380/513 nm). In addition, QHCl can quantitatively detect H2O2 in the concentration range of 0-20 μM with excellent sensitivity (LOD = 0.58 μM) under the PBS buffer solution (10 mM, pH = 7.4). Finally, bioimaging experiments demonstrated that the probe QHCl was able to be used for accurately detecting both endogenous and exogenous H2O2 in the mitochondria of living cells and zebrafish by its unique mitochondrial immobilization.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lixue Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Wenzhai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
7
|
Wu C, Xie J, Yao Q, Song Y, Yang G, Zhao J, Zhang R, Wang T, Jiang X, Cai X, Gao Y. Intrahippocampal Supramolecular Assemblies Directed Bioorthogonal Liberation of Neurotransmitters to Suppress Seizures in Freely Moving Mice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314310. [PMID: 38655719 DOI: 10.1002/adma.202314310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/22/2024] [Indexed: 04/26/2024]
Abstract
The precise delivery of anti-seizure medications (ASM) to epileptic loci remains the major challenge to treat epilepsy without causing adverse drug reactions. The unprovoked nature of epileptic seizures raises the additional need to release ASMs in a spatiotemporal controlled manner. Targeting the oxidative stress in epileptic lesions, here the reactive oxygen species (ROS) induced in situ supramolecular assemblies that synergized bioorthogonal reactions to deliver inhibitory neurotransmitter (GABA) on-demand, are developed. Tetrazine-bearing assembly precursors undergo oxidation and selectively self-assemble under pathological conditions inside primary neurons and mice brains. Assemblies induce local accumulation of tetrazine in the hippocampus CA3 region, which allows the subsequent bioorthogonal release of inhibitory neurotransmitters. For induced acute seizures, the sustained release of GABA extends the suppression than the direct supply of GABA. In the model of permanent damage of CA3, bioorthogonal ligation on assemblies provides a reservoir of GABA that behaves prompt release upon 365 nm irradiation. Incorporated with the state-of-the-art microelectrode arrays, it is elucidated that the bioorthogonal release of GABA shifts the neuron spike waveforms to suppress seizures at the single-neuron precision. The strategy of in situ supramolecular assemblies-directed bioorthogonal prodrug activation shall be promising for the effective delivery of ASMs to treat epilepsy.
Collapse
Affiliation(s)
- Chengling Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingxin Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhao
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ruijia Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ting Wang
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
8
|
Yao Q, Lin F, Lu C, Zhang R, Xu H, Hu X, Wu Z, Gao Y, Chen PR. A Dual-Mechanism Targeted Bioorthogonal Prodrug Therapy. Bioconjug Chem 2023; 34:2255-2262. [PMID: 37955377 DOI: 10.1021/acs.bioconjchem.3c00404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Bioorthogonal prodrug therapies offer an intriguing two-component system that features enhanced circulating stability and controlled activation on demand. Current strategies often deliver either the prodrug or its complementary activator to the tumor with a monomechanism targeted mechanism, which cannot achieve the desired antitumor efficacy and safety profile. The orchestration of two distinct and orthogonal mechanisms should overcome the hierarchical heterogeneity of solid tumors to improve the delivery efficiency of both components simultaneously for bio-orthogonal prodrug therapies. We herein developed a dual-mechanism targeted bioorthogonal prodrug therapy by integrating two orthogonal, receptor-independent tumor-targeting strategies. We first employed the endogenous albumin transport system to generate the in situ albumin-bound, bioorthogonal-caged doxorubicin prodrug with extended plasma circulation and selective accumulation at the tumor site. We then employed enzyme-instructed self-assembly (EISA) to specifically enrich the bioorthogonal activators within tumor cells. As each targeted delivery mode induced an intrinsic pharmacokinetic profile, further optimization of the administration sequence according to their pharmacokinetics allowed the spatiotemporally controlled prodrug activation on-target and on-demand. Taken together, by orchestrating two discrete and receptor-independent targeting strategies, we developed an all-small-molecule based bioorthogonal prodrug system for dual-mechanism targeted anticancer therapies to maximize therapeutic efficacy and minimize adverse drug reactions for chemotherapeutic agents.
Collapse
Affiliation(s)
- Qingxin Yao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chenghao Lu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ruijia Zhang
- Chinese Academy of Sciences Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hanlin Xu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoqian Hu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyang Wu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Gao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Shen A, Sun Y, Wang G, Meng X, Ren X, Wan Q, Lv Q, Wang X, Ni J, Li M, Ma X, Xu Y, Jiang Y, Wang F, Cheng Y, Wang P. An Adaptable Nanoprobe Integrated with Quantitative T 1 -Mapping MRI for Accurate Differential Diagnosis of Multidrug-Resistant Lung Cancer. Adv Healthc Mater 2023; 12:e2300684. [PMID: 37714524 DOI: 10.1002/adhm.202300684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/17/2023]
Abstract
Multidrug resistance (MDR) is one of the major factors causing failure of non-small-cell lung cancer (NSCLC) chemotherapy. Real-time and accurate differentiation between drug-resistant and sensitive NSCLC is of primary importance for guiding the subsequent treatments and improving the therapeutic outcome. However, there is no effective method to provide such an accurate differentiation. This study creates an innovative strategy of integrating H2 O2 -responsive nanoprobes with the quantitative T1 -mapping magnetic resonance imaging (MRI) technique to achieve an accurate differential diagnosis between drug-resistant and sensitive NSCLC in light of differences in H2 O2 content in the tumor microenvironment (TME). The result demonstrates that the synthesized MIL-53(Fe)@MnO2 nanocomposites possess an excellent capability of shortening the cancer longitudinal relaxation time (T1 ) when meeting H2 O2 in TME. T1 -mapping MRI could sensitively detect this T1 variation (about 2.6-fold that of T1-weighted imaging (T1 WI)) to accurately differentiate the H2 O2 content between drug-resistant and sensitive NSCLC. In addition, the quantitative data provided by the T1 -mapping MRI dedicates correct comparison across imaging tests and is more reliable than T1 WI, thus giving it a chance for precise assessment of the anti-cancer effect. This innovative strategy of merging TME adaptable nanoprobes with the quantitative MRI technique provides a new approach for the precise diagnosis of multidrug-resistant NSCLC.
Collapse
Affiliation(s)
- Aijun Shen
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yanhong Sun
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| | - Gangmin Wang
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xianfu Meng
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Tongji University Cancer Center, Shanghai, 200072, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| | - Xihui Ren
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qingxuan Wan
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qi Lv
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiangbin Wang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jiong Ni
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Minghua Li
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiaolong Ma
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yun Xu
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yutao Jiang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Fang Wang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - YingSheng Cheng
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Peijun Wang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
10
|
Sedighi M, Shrestha N, Mahmoudi Z, Khademi Z, Ghasempour A, Dehghan H, Talebi SF, Toolabi M, Préat V, Chen B, Guo X, Shahbazi MA. Multifunctional Self-Assembled Peptide Hydrogels for Biomedical Applications. Polymers (Basel) 2023; 15:1160. [PMID: 36904404 PMCID: PMC10007692 DOI: 10.3390/polym15051160] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Self-assembly is a growth mechanism in nature to apply local interactions forming a minimum energy structure. Currently, self-assembled materials are considered for biomedical applications due to their pleasant features, including scalability, versatility, simplicity, and inexpensiveness. Self-assembled peptides can be applied to design and fabricate different structures, such as micelles, hydrogels, and vesicles, by diverse physical interactions between specific building blocks. Among them, bioactivity, biocompatibility, and biodegradability of peptide hydrogels have introduced them as versatile platforms in biomedical applications, such as drug delivery, tissue engineering, biosensing, and treating different diseases. Moreover, peptides are capable of mimicking the microenvironment of natural tissues and responding to internal and external stimuli for triggered drug release. In the current review, the unique characteristics of peptide hydrogels and recent advances in their design, fabrication, as well as chemical, physical, and biological properties are presented. Additionally, recent developments of these biomaterials are discussed with a particular focus on their biomedical applications in targeted drug delivery and gene delivery, stem cell therapy, cancer therapy and immune regulation, bioimaging, and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853076, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Neha Shrestha
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Biomedicine and Translational Research, Research Institute for Bioscience and Biotechnology, Kathmandu P.O. Box 7731, Nepal
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Maryam Toolabi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Bozhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xindong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
11
|
Liang X, Zhang Y, Zhou J, Bu Z, Liu J, Zhang K. Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Chen J, Zhang P, Zhao Y, Zhao J, Wu X, Zhang R, Cha R, Yao Q, Gao Y. Nitroreductase-instructed supramolecular assemblies for microbiome regulation to enhance colorectal cancer treatments. SCIENCE ADVANCES 2022; 8:eadd2789. [PMID: 36351016 PMCID: PMC9645719 DOI: 10.1126/sciadv.add2789] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The development of human microbiome has collectively correlated the sophisticated interactions between Fusobacterium nucleatum and colorectal cancers (CRCs). However, the treatment of CRC via disruption of gastrointestinal flora remains less explored. Aiming at the up-regulated activity of nitroreductase in F. nucleatum-infected tumors, here, we developed the nitroreductase-instructed supramolecular self-assembly. The designed assembly precursors underwent enzymatic transformation to form assemblies, which agglutinated F. nucleatum and eradicated the targeted bacteria. These assemblies with anti-F. nucleatum activity could further alleviate the bacteria-induced drug resistance effect, thus sensitizing CRC cells against chemo-drugs. Eventually, in mice bearing F. nucleatum-infected CRC, the local introduction of nitroreductase-instructed assemblies could efficiently inhibit the tumor growth. Overall, this study incorporated nitroreductase to broaden the toolbox of enzyme-instructed supramolecular self-assembly. The local introduction of nitroreductase-instructed assemblies could target F. nucleatum to eliminate its contribution to CRC drug resistance and ameliorate chemotherapy outcomes.
Collapse
Affiliation(s)
- Jiali Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pai Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaobo Wu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Central South University of Forestry and Technology, Changsha 410004, China
| | - Ruijia Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruitao Cha
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qingxin Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Zhao Y, Yao Q, Chen J, Zhang R, Song J, Gao Y. Intracellular fluorogenic supramolecular assemblies for self-reporting bioorthogonal prodrug activation. Biomater Sci 2022; 10:5662-5668. [PMID: 35996984 DOI: 10.1039/d2bm00972b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visual drug delivery system (DDS) is urgently needed for precision medicine. DDS-mediated bioorthogonal prodrug activation strategies have demonstrated remarkable advantages in enlarging a therapeutic index via the alleviation of adverse drug reactions. However, the events of bioorthogonal prodrug activation remain inaccessible. Here, we construct a self-reporting bioorthogonal prodrug activation system using fluorescence emission to interpret prodrug activation events. In designed reactive oxygen species (ROS)-instructed supramolecular assemblies, the bioorthogonal reaction handle of tetrazine carries a dual role as fluorescence quencher and prodrug activator. The subsequent inverse-electron-demand Diels-Alder (IEDDA) reaction simultaneously liberates fluorescence and active drugs, which form a linear relationship. Differentiated by their cellular redox status, ROS-instructed supramolecular assemblies form selectively in both tumor cells and cell spheroids. Upon prodrug treatment, the brightness of fluorescence reflects the liberation of active drugs, which further correlates with the cell survival rate. Therefore, a fluorescence-based visualizable DDS (VDDS) for bioorthogonal prodrug activation is demonstrated, which should be useful to elucidate the multi-step processes in drug delivery and determine prodrug activation efficacy.
Collapse
Affiliation(s)
- Yan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Qingxin Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiali Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Ruijia Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Jialei Song
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
14
|
Zhang NY, Hu XJ, An HW, Liang JX, Wang H. Programmable design and self assembly of peptide conjugated AIEgens for biomedical applications. Biomaterials 2022; 287:121655. [PMID: 35810541 DOI: 10.1016/j.biomaterials.2022.121655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Aggregation-induced emission luminogens (AIEgens) possess enhanced fluorescence in highly aggregated states, thus enabling AIEgens as a promising module for highly emissive fluorescence biomaterials. So far, AIEgens-based nanomaterials and their hybrids have been reported for biomedical applications. Benefiting from the intrinsic biocompatibility and biofunction-editing properties of peptides, peptide-AIEgens hybrid biomaterials reveal unlimited possibilities including target capacity, specificity, stimuli-responsiveness, self-assembly, controllable structural transformation, etc.. In the last two decades, peptide-AIEgens hybrid nanomaterials with a unique design concept in aggregated states have achieved various biomedical applications such as biosensing, bioimaging, imaging-guided surgery, drug delivery and therapy. More recently, programmable design of peptide-AIEgens for in situ self-assembly provides a unique strategy for constructing intelligent entities with defined biological functions. In this review, we summarize the basic design principle of programmable peptide-AIEgens, structure-effect relationship and their unusual biomedical effects. Finally, an outlook and perspective toward future challenges and developments of peptide-AIEgens nanomaterials are concluded.
Collapse
Affiliation(s)
- Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xing-Jie Hu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Jian-Xiao Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
15
|
Yan D, Zhang H, Xu X, Ren C, Han C, Li Z. Theranostic nanosystem with supramolecular self-assembly for enhanced reactive oxygen species-mediated apoptosis guided by dual-modality tumor imaging. Pharmacol Res 2022; 180:106241. [DOI: 10.1016/j.phrs.2022.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
16
|
Song J, Wu C, Zhao Y, Yang M, Yao Q, Gao Y. Bioorthogonal Disassembly of Tetrazine Bearing Supramolecular Assemblies Inside Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104772. [PMID: 34843166 DOI: 10.1002/smll.202104772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Supramolecular assemblies are an emerging class of nanomaterials for drug delivery systems (DDS), while their unintended retention in the biological milieu remains largely unsolved. To realize the prompt clearance of supramolecular assemblies, the bioorthogonal reaction to disassemble and clear the supramolecular assemblies within living cells is investigated here. A series of tetrazine-capped assembly precursors which can self-assemble into nanofibers and hydrogels upon enzymatic dephosphorylation are designed. Such an enzyme-instructed supramolecular assembly process can perform intracellularly. The time-dependent accumulation of assemblies elicits oxidative stress and induces cellular toxicity. Tetrazine-bearing assemblies react with trans-cyclooctene derivatives, which lead to the disruption of π-π stacking and induce disassembly. In this way, the intracellular self-assemblies disassemble and are deprived of potency. This bioorthogonal disassembly strategy leverages the biosafety aspect in developing nanomaterials for DDSs.
Collapse
Affiliation(s)
- Jialei Song
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengling Wu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Min Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Qingxin Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Yao Q, Gao S, Wu C, Lin T, Gao Y. Enzymatic non-covalent synthesis of supramolecular assemblies as a general platform for bioorthogonal prodrugs activation to combat drug resistance. Biomaterials 2021; 277:121119. [PMID: 34492583 DOI: 10.1016/j.biomaterials.2021.121119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Multi-drug resistance (MDR) is one of the leading causes of the anticancer failures. Besides the blockage of the MDR pathways, the development of more potent drugs is with urgent needs, but has been postponed mainly due to an imbalance between safety and efficacy. The recent development of the bioorthogonal prodrug activation strategy has shown immense potential to balance safety and efficacy, while recent studies only focused on few drug entities such as doxorubicin and monomethyl auristatin E, leaving the vast collection of toxins undetermined. Here we have enumerated typical molecular entities ranging from food and drug administration (FDA) approved drugs to a heated antibody drug conjugates (ADC) warhead and a trichothecene toxin to demonstrate that the bioorthogonal caging and specific activation could serve as a general design to increase the therapeutic index of bioactive molecules. These prodrugs can be efficiently activated on-demand by the bioorthogonal activators whose distribution was regulated by the cancer cell specific enzymatic non-covalent synthesis of supramolecular self-assemblies. The prodrug activation not only enhanced the synergistic therapeutic effect within a broad range of dose ratios but also allowed the convenient switching of drug identities to successfully combat MDR tumor in vivo. In general, this strategy might serve as a general platform, which can be readily applicable to enlarge the therapeutic window for various bioactive molecules. We envision that the spatiotemporal controlled bioorthogonal prodrug activation would facilitate the discovery of anticancer drugs.
Collapse
Affiliation(s)
- Qingxin Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Chengling Wu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ting Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Yao Q, Wu G, Hao H, Lu H, Gao Y. Redox-Mediated Reversible Supramolecular Assemblies Driven by Switch and Interplay of Peptide Secondary Structures. Biomacromolecules 2021; 22:2563-2572. [PMID: 33961410 DOI: 10.1021/acs.biomac.1c00300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The construction of reversible supramolecular self-assembly in vivo remains a significant challenge. Here, we demonstrate the redox-triggered reversible supramolecular self-assembly governed by the "check and balance" of two secondary conformations within a brushlike peptide-selenopolypeptide conjugate. The conjugate constitutes a polypeptide backbone whose side chain contains selenoether functional moieties and double bonds to be readily grafted with β-sheet-prone short-peptide NapFFC. The backbone of the conjugate initially assumes a robust and rigid α-helical conformation, which inhibits the supramolecular assembly of the short peptide in the side chain and yields an overall irregular aggregate morphology under native/reduced conditions. Upon oxidation of the selenoether to more hydrophilic selenoxide, the backbone helix switches to a flexible and disordered conformation, which unleashes the side-chain NapFFC self-assembly into nanofibrils via the adoption of β-sheet conformation. The reversible switch of the supramolecular morphology enables efficient loading and tumor-microenvironment-triggered release of anticancer drugs for in vivo cancer treatment with satisfactory efficacy and biocompatibility. The interplay and interaction between two well-defined secondary structures within one scaffold offer tremendous opportunity for the design and construction of functional supramolecular biomaterials.
Collapse
Affiliation(s)
- Qingxin Yao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangqi Wu
- Beijing National Laboratory for Molecular Sciences Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao Hao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yuan Gao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
19
|
Rani A, De Leon-Rodriguez LM, Kavianinia I, McGillivray DJ, Williams DE, Brimble MA. Synthesis and characterization of mono S-lipidated peptide hydrogels: a platform for the preparation of reactive oxygen species responsive materials. Org Biomol Chem 2021; 19:3665-3677. [PMID: 33908574 DOI: 10.1039/d1ob00355k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we report the synthesis of mono lipidated peptides containing a 3-mercaptopropionate linker in the N-terminus by means of a photoinitiated thiol-ene reaction (S-lipidation). We evaluate the self-assembling and hydrogelation properties of a library of mono S-lipidated peptides containing lipid chains of various lengths and demonstrate that hydrogelation was driven by a balance between the lipid chain's hydrophobicity and the peptide's facial hydrophobicity. We further postulate that a simple calculation using estimated values of log D could be used as a predictor of hydrogelation when designing similar systems. A mono S-lipidated peptide containing a short lipid chain that formed hydrogels was fully characterized and a mechanism for the peptide hydrogelation developed. Finally, we demonstrate that the presence of the thioether group in the mono S-lipidated peptide hydrogels, which is a feature lacking in conventional N-acyl lipidated systems, enables the controlled disassembly of the gel via oxidation to the sulfoxide by reactive oxygen species in accordance with a hydrophobicity-modulated strategy. Thus, we conclude that mono S-lipidated peptide hydrogels constitute a novel and simple tool for the development of tissue engineering and targeted drug delivery applications of diseases with overexpression of reactive oxygen species (e.g. degenerative and metabolic diseases, and cancers).
Collapse
Affiliation(s)
- Aakanksha Rani
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Luis M De Leon-Rodriguez
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Iman Kavianinia
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - David E Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| |
Collapse
|
20
|
Liu J, Wu C, Dai G, Feng F, Chi Y, Xu K, Zhong W. Molecular self-assembly of a tyroservatide-derived octapeptide and hydroxycamptothecin for enhanced therapeutic efficacy. NANOSCALE 2021; 13:5094-5102. [PMID: 33650607 DOI: 10.1039/d0nr08741f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tyroservatide (YSV) belongs to a class of bioactive peptides that have drawn considerable attention in the field of drug discovery, yet it displays limited potency and often requires a millimolar concentration to execute its cellular functions. To enhance the potency of the drug through a self-assembling strategy, we designed and synthesized a series of octapeptides through conjugation of YSV with a pentapeptide sequence bearing alternating hydrophobic and hydrophilic amino acids to promote their self-assembling capabilities. Initial screening for hydrogelation gave a novel octapeptide (denoted as 1-YSV hereafter) that was capable of self-assembling under physiological conditions to afford supramolecular nanofibers with enhanced anti-cancer efficacy compared to YSV itself. Interestingly, 1-YSV formed a robust co-assembly with the anticancer drug hydroxycamptothecin (HCPT) to afford 1-YSV/HCPT hydrogel, which not only greatly improved the viscoelastic properties of hydrogels, but also stabilized HCPT in the hydrogel matrix and avoided the agglomeration of drug molecules. Compared to HCPT solution, the hydrogel formulation of 1-YSV/HCPT demonstrated better efficacy against the proliferation of non-small cell lung cancer A549 cells both in vitro and in vivo. Finally, thanks to the pure amino acid-based composition, the 1-YSV/HCPT formulation exhibited excellent biocompatibility, giving a low hemolytic rate to red blood cells, with mild local tissue reactions and negligible systematic toxicities in mice.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Can Wu
- Department of Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Guoru Dai
- Department of Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Feng Feng
- Department of Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Yuquan Chi
- Department of Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing, P. R. China and Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, P. R. China.
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing, P. R. China and Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, P. R. China. and Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
21
|
Chen J, Zhao Y, Yao Q, Gao Y. Pathological environment directed in situ peptidic supramolecular assemblies for nanomedicines. Biomed Mater 2021; 16:022011. [PMID: 33630754 DOI: 10.1088/1748-605x/abc2e9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptidic self-assembly provides a powerful method to build biomedical materials with integrated functions. In particular, pathological environment instructed peptidic supramolecular have gained great progress in treating various diseases. Typically, certain pathology related factors convert hydrophilic precursors to corresponding more hydrophobic motifs to assemble into supramolecular structures. Herein, we would like to review the recent progress of nanomedicines based on the development of instructed self-assembly against several specific disease models. Firstly we introduce the cancer instructed self-assembly. These assemblies have exhibited great inhibition efficacy, as well as enhanced imaging contrast, against cancer models both in vitro and in vivo. Then we discuss the infection instructed peptidic self-assembly. A number of different molecular designs have demonstrated the potential antibacterial application with satisfied efficiency for peptidic supramolecular assemblies. Further, we discuss the application of instructed peptidic self-assembly for other diseases including neurodegenerative disease and vaccine. The assemblies have succeeded in down-regulating abnormal Aβ aggregates and immunotherapy. In summary, the self-assembly precursors are typical two-component molecules with (1) a self-assembling motif and (2) a cleavable trigger responsive to the pathological environment. Upon cleavage, the self-assembly occurs selectively in pathological loci whose targeting capability is independent from active targeting. Bearing the novel targeting regime, we envision that the pathological conditions instructed peptidic self-assembly will lead a paradigm shift on biomedical materials.
Collapse
Affiliation(s)
- Jiali Chen
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan Zhao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qingxin Yao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuan Gao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
22
|
Tsutsumi N, Ito A, Ishigamori A, Ikeda M, Izumi M, Ochi R. Synthesis and Self-Assembly Properties of Bola-Amphiphilic Glycosylated Lipopeptide-Type Supramolecular Hydrogels Showing Colour Changes Along with Gel-Sol Transition. Int J Mol Sci 2021; 22:1860. [PMID: 33668410 PMCID: PMC7917936 DOI: 10.3390/ijms22041860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Supramolecular hydrogels formed by self-assembly of low-molecular-weight amphiphiles (hydrogelators) have attracted significant attention, as smart and soft materials. However, most of the observed stimuli-responsive behaviour of these supramolecular hydrogels are limited to gel-sol transitions. In this study, we present bola-amphiphilic glycosylated lipopeptide-type supramolecular hydrogelators that exhibit reversible thermochromism along with a gel-sol transition. The bola-amphiphiles have mono-, di-, tri- or tetra-phenylalanine (F) as a short peptide moiety. We investigate and discuss the effects of the number of F residues on the gelation ability and the morphology of the self-assembled nanostructures.
Collapse
Affiliation(s)
- Naoki Tsutsumi
- Graduate School of Integrated Arts and Sciences, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan; (N.T.); (M.I.)
| | - Akitaka Ito
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan;
- Research Center for Molecular Design, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Azumi Ishigamori
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan;
| | - Masato Ikeda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masayuki Izumi
- Graduate School of Integrated Arts and Sciences, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan; (N.T.); (M.I.)
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan;
- Interdisciplinary Science Unit, Multidisciplinary Sciences Cluster, Research and Education Faculty, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Rika Ochi
- Graduate School of Integrated Arts and Sciences, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan; (N.T.); (M.I.)
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan;
- Interdisciplinary Science Unit, Multidisciplinary Sciences Cluster, Research and Education Faculty, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| |
Collapse
|
23
|
Zhou XR, Liu Y, Huang Z, Yao Q, He F, Gao Y. Gag Protein Oriented Supramolecular Nets as Potential HIV Traps. Bioconjug Chem 2021; 32:106-110. [PMID: 33405891 DOI: 10.1021/acs.bioconjchem.0c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For HIV/AIDS treatment, the cocktail therapy which uses a combination of anti-retroviral drugs remains the most widely accepted practice. However, the potential drug toxicity, patient tolerability, and emerging drug resistance have limited its long-term efficiency. Here, we design a HIV Gag protein-targeting redox supramolecular assembly (ROSA) system for potential HIV inhibition. An assembling precursor was constructed through conjugation of an oxidation-activatable fluorogenic compound BQA with a selected tetrapeptide GGFF. Since BQA shares a similar structure with the known Gag inhibitor, the precursor could bind to HIV Gag protein with moderate affinity. Moreover, after oxidation, the corresponding nanofibers could bind to Gag protein and trap HIV to realize virus control, thus providing a potential anti-HIV strategy.
Collapse
Affiliation(s)
- Xi-Rui Zhou
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650031, China
| | - Zhentao Huang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qingxin Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fangfei He
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
24
|
Xiong Y, Shi C, Li L, Tang Y, Zhang X, Liao S, Zhang B, Sun C, Ren C. A review on recent advances in amino acid and peptide-based fluorescence and its potential applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02230j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescence is widely used to detect functional groups and ions, and peptides are used in various fields due to their excellent biological activity.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Changxin Shi
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lingyi Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Sisi Liao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Changmei Sun
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai 264000, China
| |
Collapse
|
25
|
Liu X, Sun X, Liang G. Peptide-based supramolecular hydrogels for bioimaging applications. Biomater Sci 2021; 9:315-327. [DOI: 10.1039/d0bm01020k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide-based supramolecular hydrogels have unique merits in bioimaging applications.
Collapse
Affiliation(s)
- Xiaoyang Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Xianbao Sun
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- China
| |
Collapse
|
26
|
Liu D, Yin J, Liang S, Shi W, Jiang X, Gao Y. Enzyme-Regulated Peptide-Liquid Metal Hybrid Hydrogels as Cell Amber for Single-Cell Manipulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45807-45813. [PMID: 32951417 DOI: 10.1021/acsami.0c13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current strategies to construct cell-based bioartificial tissues largely remain on a multicell level. Taking cell diversity into account, single-cell manipulation is urgently needed for delicate bioartificial tissue construction. Current single-cell isolation and profiling techniques involve invasive processes and thus are not applicable for single-cell manipulation. Here, we managed to fabricate peptide-liquid metal hybrid hydrogels as "cell ambers" which were suitable for single-cell isolation as well as further handling. The successful preparation of uniform liquid metal nanoparticles allowed the fabrication of peptide-liquid metal hydrogel with excellent recovery property upon mechanical destruction. The alkaline phosphatase-instructed supramolecular self-assembly process allowed the formation of microhydrogel post-filling in the PDMS template. The co-culture of the hydrogel precursor and mammalian cells realized the embedding of cells into elastic hydrogels which were the so-called cell ambers. The cell ambers turned out to be biocompatible and capable of supporting cell survival. Aided with the micro-operating system and a laser scanning confocal microscope, we could arrange these as-prepared 3D single-cell ambers into various patterns as desired. Our strategy provided the possibility to manipulate a single cell, which served as a prototype of cell architecture toward cell-based bioartificial tissue construction.
Collapse
Affiliation(s)
- Dongdong Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxiang Yin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Sen Liang
- The Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Shi
- The Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences, Beijing 100190, China
| | - Xingyu Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Department of Biomedical Engineering, Southern University of Science & Technology, Shenzhen, Guangdong 518055, China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
28
|
Huang Z, Liu Y, Wang L, Ali A, Yao Q, Jiang X, Gao Y. Supramolecular assemblies mimicking neutrophil extracellular traps for MRSE infection control. Biomaterials 2020; 253:120124. [DOI: 10.1016/j.biomaterials.2020.120124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/20/2023]
|
29
|
|
30
|
Oosumi R, Ikeda M, Ito A, Izumi M, Ochi R. Structural diversification of bola-amphiphilic glycolipid-type supramolecular hydrogelators exhibiting colour changes along with the gel-sol transition. SOFT MATTER 2020; 16:7274-7278. [PMID: 32658225 DOI: 10.1039/d0sm01068e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We diversified the structures of bola-amphiphilic glycolipid-type supramolecular hydrogelators that exhibited reversible thermochromism along with a gel-sol transition. The hydrogelators were designed and synthesized to have homo- or hetero-saccharides on each end of their molecules. Herein, the effects of the saccharides' structure on the gelation ability are discussed.
Collapse
Affiliation(s)
- Ryoya Oosumi
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan.
| | - Masato Ikeda
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan and United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502, Japan and Research Center for Molecular Design, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Masayuki Izumi
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan. and Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Rika Ochi
- Faculty of Science, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan. and Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| |
Collapse
|
31
|
Schunk HC, Hernandez DS, Austin MJ, Dhada KS, Rosales AM, Suggs LJ. Assessing the range of enzymatic and oxidative tunability for biosensor design. J Mater Chem B 2020; 8:3460-3487. [PMID: 32159202 PMCID: PMC7219111 DOI: 10.1039/c9tb02666e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Development of multi-functional materials and biosensors that can achieve an in situ response designed by the user is a current need in the biomaterials field, especially in complex biological environments, such as inflammation, where multiple enzymatic and oxidative signals are present. In the past decade, there has been extensive research and development of materials chemistries for detecting and monitoring enzymatic activity, as well as for releasing therapeutic and diagnostic agents in regions undergoing oxidative stress. However, there has been limited development of materials in the context of enzymatic and oxidative triggers together, despite their closely tied and overlapping mechanisms. With research focusing on enzymatically and oxidatively triggered materials separately, these systems may be inadequate in monitoring the complexity of inflammatory environments, thus limiting in vivo translatability and diagnostic accuracy. The intention of this review is to highlight a variety of enzymatically and oxidatively triggered materials chemistries to draw attention to the range of synthetic tunability available for the construction of novel biosensors with a spectrum of programmed responses. We focus our discussion on several types of macromolecular sensors, generally classified by the causative material response driving ultimate signal detection. This includes sensing based on degradative processes, conformational changes, supramolecular assembly/disassembly, and nanomaterial interactions, among others. We see each of these classes providing valuable tools toward coalescing current gaps in the biosensing field regarding specificity, selectivity, sensitivity, and flexibility in application. Additionally, by considering the materials chemistry of enzymatically and oxidatively triggered biomaterials in tandem, we hope to encourage synthesis of new biosensors that capitalize on their synergistic roles and overlapping mechanisms in inflammatory environments for applications in disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Hattie C Schunk
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Wu C, Liu J, Zhai Z, Yang L, Tang X, Zhao L, Xu K, Zhong W. Double-crosslinked nanocomposite hydrogels for temporal control of drug dosing in combination therapy. Acta Biomater 2020; 106:278-288. [PMID: 32084599 DOI: 10.1016/j.actbio.2020.02.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/31/2023]
Abstract
Temporal control of drug dosing is indispensable for a successful combination therapy that utilizes cisplatin (CDDP) and irinotecan (IRN), with clinical evidence supporting a higher response rate when CDDP was administered prior to IRN. Herein, a peptide-based nanocomposite hydrogel (CDDP/Pept-AlgNP/IRN) was designed for differential release of CDDP and IRN to maximize synergism of two drugs. First, a double-crosslinking strategy was exploited for structural reinforcement of hydrogel, with integration of coordination interactions between CDDP and hydrogelator (Pept) as well as electrostatic interactions between Pept and alginate nanoparticles (AlgNP/IRN), that afforded nanocomposite hydrogel with 42-fold increase in storage modulus comparing to peptide gel alone. Next, the nanocomposite hydrogel with excellent injectability served as a depot for controlled release of dual drugs, and guaranteed a fast release of CDDP prior to a tunable release of IRN that is dependent on fraction ratios of AlgNP in the composite materials. Comparing to simple mixture of CDDP and IRN solution, CDDP/Pept-AlgNP/IRN hydrogel formulation demonstrated excelling synergism of CDDP and IRN in cell inhibition studies, with efficacious antitumor potency further proved in tumor regression studies in vivo. We believe that the strategy of utilizing co-assembly of multiple pairs of entities (i.e. drug-gelator, nanoparticle-gelator) in composite materials provides a generalized method to design mechanically stable supramolecular hydrogels, and further promises an exact temporal control of drug dosing by packing individual drugs in co-assembled structures/domains to satisfy clinical demands from combination therapy. STATEMENT OF SIGNIFICANCE: This study reports the design of nanocomposite hydrogels with two distinct co-assembling domains for structural reinforcement of hydrogel and differential release of two drugs (CDDP and IRN) in combination therapy. We first investigated the effects of co-assembling processes for the reinforcement of hydrogel. Then we utilized the hydrogel for differential release of CDDP and IRN to achieve better synergistic efficacy of drugs in inhibiting the growth of cancer cell A549 and better anticancer efficacies than single drug formulations or solution mixtures of dual drugs in an A549-xenografted mouse model. We believe that the strategy of packing individual drugs in distinct co-assembling structures promises a paradigm shift for regulating temporal control of drug dosing in combination therapy.
Collapse
Affiliation(s)
- Can Wu
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Jing Liu
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Ziran Zhai
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Liqiang Yang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Xuan Tang
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Lingzhi Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, Jiangsu, China.
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing 211198, Jiangsu, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, Jiangsu, China.
| |
Collapse
|
33
|
|
34
|
Yao Q, Huang Z, Liu D, Chen J, Gao Y. Enzyme-Instructed Supramolecular Self-Assembly with Anticancer Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804814. [PMID: 30444545 DOI: 10.1002/adma.201804814] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Cancer remains one of the leading causes of death, which has continuously stimulated the development of numerous functional biomaterials with anticancer activities. Herein is reviewed one recent trend of biomaterials focusing on the advances in enzyme-instructed supramolecular self-assembly (EISA) with anticancer activity. EISA relies on enzymatic transformations to convert designed small-molecular precursors into corresponding amphiphilic residues that can form assemblies in living systems. EISA has shown some advantages in controlling cell fate from three aspects. 1) Based on the abnormal activity of specific enzymes, EISA can differentiate cancer cells from normal cells. In contrast to the classical ligand-receptor recognition, the targeting capability of EISA relies on dynamic control of the self-assembly process. 2) The interactions between EISA and cellular components directly disrupt cellular processes or pathways, resulting in cell death phenotypes. 3) EISA spatiotemporally controls the distribution of therapeutic agents, which boosts drug delivery efficiency. Therefore, with regard to the development of EISA, the aim is to provide a perspective on the future directions of research into EISA as anticancer theranostics.
Collapse
Affiliation(s)
- Qingxin Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhentao Huang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Dongdong Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jiali Chen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
35
|
Zheng DJ, Yang YS, Zhu HL. Recent progress in the development of small-molecule fluorescent probes for the detection of hydrogen peroxide. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Zhang J, Shi L, Li Z, Li D, Tian X, Zhang C. Near-infrared fluorescence probe for hydrogen peroxide detection: design, synthesis, and application in living systems. Analyst 2019; 144:3643-3648. [PMID: 31073567 DOI: 10.1039/c9an00385a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Using fluorescent probes to detect endogenous hydrogen peroxide, which is associated with many diseases in the human body, remains an essential technique. Cyanine fluorochromes are a class of dyes that have attracted much attention and are widely used in the synthesis of fluorescent probes. In this article, a novel near-infrared (NIR) fluorescence probe for the detection of hydrogen peroxide was constructed and successfully applied to imaging endogenous hydrogen peroxide in vivo. Notably, probe 1 was designed by connecting 4-(bromomethyl)benzeneboronic acid pinacol ester as the sensing unit to the IR-780 hemicyanine skeleton, which exhibits excellent properties like NIR fluorescence emission over 700 nm. Probe 1 has satisfactory sensitivity to hydrogen peroxide with a low detection limit of 0.14 μM (S/N = 3), attributed to a responding mechanism that leads to the oxidation of phenylboronic acid pinacol ester and thereby releases fluorophore 2. Moreover, probe 1 displays excellent selectivity towards hydrogen peroxide over other substances. Taking advantage of these properties, the probe proved to be cell-permeable. Based on the results of N-acetylcysteine and rotenone together, probe 1 is capable of clearly visualizing endogenously produced hydrogen peroxide in living HepG2 cells and mice. The superior performance of the probe, as a reliable chemical tool, makes it of great potential application for exploring the role played by hydrogen peroxide in biological systems.
Collapse
Affiliation(s)
- Jiahang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Liang Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Dongyu Li
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Xinwei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
37
|
Zheng D, Gao Z, Xu T, Liang C, Shi Y, Wang L, Yang Z. Responsive peptide-based supramolecular hydrogels constructed by self-immolative chemistry. NANOSCALE 2018; 10:21459-21465. [PMID: 30427030 DOI: 10.1039/c8nr07534d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peptide-based supramolecular hydrogels that are stimuli-responsive under aqueous conditions have many potential biological applications, including drug delivery and sensing. Herein, we reported a series of responsive peptide-based supramolecular hydrogels that respond to glutathione (GSH), nitric oxide (NO) and hydrogen sulfide (H2S), which are biologically important signaling molecules. The responsive hydrogelators were designed by "self-immolative" chemistry and constructed by using self-immolative groups to modify short peptides. The self-immolative capping group could be removed in the presence of a corresponding trigger, thus causing gel-sol phase transitions. The potential of our responsive hydrogels for drug release was also demonstrated in this study. Our study offered several candidates of responsive hydrogels for sensing and drug delivery.
Collapse
Affiliation(s)
- Debin Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Čížková M, Cattiaux L, Pandard J, Guille-Collignon M, Lemaître F, Delacotte J, Mallet JM, Labbé E, Buriez O. Redox switchable rhodamine-ferrocene dyad: Exploring imaging possibilities in cells. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
39
|
Wei S, Zhou XR, Huang Z, Yao Q, Gao Y. Hydrogen sulfide induced supramolecular self-assembly in living cells. Chem Commun (Camb) 2018; 54:9051-9054. [DOI: 10.1039/c8cc05174g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gasotransmitter mediated reduction instructs supramolecular self-assembly in multiple living cell lines, revealing the variation in intracellular H2S production.
Collapse
Affiliation(s)
- Simin Wei
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Xi-Rui Zhou
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Zhentao Huang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Qingxin Yao
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|