1
|
Zhang X, Zhang JQ, Sun ZH, Shan HM, Su JC, Ma XP, Su GF, Xu LP, Mo DL. Copper-Catalyzed Enantioselective Skeletal Editing through a Formal Nitrogen Insertion into Indoles to Synthesize Atropisomeric Aminoaryl Quinoxalines. Angew Chem Int Ed Engl 2025; 64:e202420390. [PMID: 39686810 DOI: 10.1002/anie.202420390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Skeletal editing represents an attractive strategy for adding complexity to a given molecular scaffold in chemical synthesis. Isodesmic reactions provide a complementary skeletal editing approach for the redistribution of chemical bonds in chemical synthesis. However, catalytic enantioselective isodesmic reaction is extremely scarce and enantioselective isodesmic reaction to synthesize atropisomeric compounds is unknown. Herein, we report a facile method to synthesize axially chiral aminoaryl quinoxalines through Cu(I)-catalyzed dearomatization and sequential chiral phosphoric acid (CPA) catalyzed enantioselective isodesmic C-N bond formation and cleavage from indoles and 1,2-diaminoarenes under mild reaction conditions. In this process, the five-membered ring of the indole scaffold was broken and a novel quinoxaline skeleton was constructed. This method allows the practical and atom-economical synthesis of valuable axially chiral aminoaryl quinoxalines in high yields (up to 95 %) and generally excellent enantioselectivities (up to 99 % ee). Notably, this novel type of quinoxaline atropisomers has promising applications in developing axially chiral ligand in asymmetric catalysis. This strategy represents the first example of CPA-catalyzed enantioselective isodesmic reaction to form axially chiral compounds.
Collapse
Affiliation(s)
- Xu Zhang
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Jin-Qi Zhang
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Ze-Hua Sun
- School of Chemistry and Chemical Engineering, Shandong University
| | - Hui-Mei Shan
- School of Chemistry and Chemical Engineering, Shandong University
- School of Chemistry and Chemical Engineering, Shandong University of Technology
| | - Jun-Cheng Su
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Xiao-Pan Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guilin Medical University, 1 Zhi Yuan Road, Guilin, 541199, China
| | - Gui-Fa Su
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University
| | - Dong-Liang Mo
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| |
Collapse
|
2
|
Bansal D, Nataraj G, Sivaganesan P, Das MK, Chaudhuri S. Syntheses of Novel Spirobenzazepinoindole Derivatives via Lewis-Acid Catalyzed Pictet-Spengler Cyclization. Chem Asian J 2024; 19:e202401025. [PMID: 39307999 DOI: 10.1002/asia.202401025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Indexed: 11/01/2024]
Abstract
The syntheses of novel spirobenzazepinoindole derivatives has been achieved through a highly efficient and synthetic route. The approach involves a two-step reaction, utilizing indole derivatives, 2-amino benzyl alcohol, and ninhydrin as key starting materials under mild reaction conditions. The reaction proceeds via a sequential cascade process involving cyclization, condensation and spiro-annulation, leading to the formation of the spirobenzazepinoindole core structure in good to excellent yields. The method offers broad substrate scope, high atom economy, and operational simplicity. The synthesized spirobenzazepinoindoles were fully characterized by spectroscopic techniques, including NMR (1H & 13C), IR and mass spectrometry. The methodology provides a valuable tool for the rapid generation of structurally complex spirobenzazepinoindoles, which could serve as scaffolds for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Diksha Bansal
- Organic and Bio-Organic Chemistry laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai, 600020, India
| | - Gokulprasanth Nataraj
- Organic and Bio-Organic Chemistry laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai, 600020, India
| | - Pooja Sivaganesan
- Organic and Bio-Organic Chemistry laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai, 600020, India
| | - Mrinal Kanti Das
- Department of Chemistry, Karimpur Pannadevi College (KPDC), University of Kalyani, Karimpur, Nadia, West Bengal, 741152, India
| | - Saikat Chaudhuri
- Organic and Bio-Organic Chemistry laboratory, CSIR-Central Leather Research Institute (CSIR-CLRI), Chennai, 600020, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
3
|
Chouhan R, Ray N, Gogoi NN, Das SK. Dearomative Alkylation-Based Two-Step cis-Diastereoselective Synthesis of Indoline-2,3-Fused Chromans and Tetrahydropyrans. J Org Chem 2024; 89:14951-14967. [PMID: 39360679 DOI: 10.1021/acs.joc.4c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Herein, we describe a two-step, cis-diastereoselective synthesis of indoline-2,3-fused chromans from 3-substituted indoles. The method proceeds without intermediacy of ortho-quinone methides and leverages the dual function of TBS-protected 2-hydroxybenzyl iodides both as highly reactive alkylating agents in a t-BuONa/Et3B-promoted dearomative alkylation step and as a source of masked phenoxide nucleophiles in a subsequent TBAF-induced one-pot deprotection-cyclization step of the resulting indolenines. Importantly, this two-step protocol can also be extended to access indoline-2,3-fused tetrahydropyrans. These syntheses of indoline-2,3-fused chromans and tetrahydropyrans proceed with operational convenience, use easily accessible substrates and reagents, and feature broad substrate scope, high yields and complete diastereoselectivity. Furthermore, the synthesized products have the potential to undergo late-stage functionalization.
Collapse
Affiliation(s)
- Raju Chouhan
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Sonitpur, Assam, India
| | - Nandini Ray
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Sonitpur, Assam, India
| | - Nitish Nayan Gogoi
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Sonitpur, Assam, India
| | - Sajal Kumar Das
- Department of Chemical Sciences, Tezpur University, Napaam 784028, Sonitpur, Assam, India
| |
Collapse
|
4
|
Luo X, Xu MM, Xu XP, Ji SJ. NBS-induced intramolecular annulation reactions for the divergent synthesis of fused- and spirocyclic indolines. Chem Commun (Camb) 2023; 59:6576-6579. [PMID: 37183546 DOI: 10.1039/d3cc01920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An NBS-induced intramolecular annulation of 3-(1H-indol-3-yl)-N-alkoxypropanamide is described. The reactions proceed well and quickly under mild conditions with the help of a base. It was found that C2-substituents on the indole ring in 3-(1H-indol-3-yl)-N-alkoxypropanamide have a great influence upon the reaction. By using C2-methyl- and C2-phenyl-3-(1H-indol-3-yl)-N-alkoxypropanamide as templates, practical protocols for the divergent synthesis of fused- and spirocyclic indoline compounds were studied and established.
Collapse
Affiliation(s)
- Xian Luo
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Meng-Meng Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
- Innovation Center for Chemical Science, Soochow University, China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
- Suzhou Baolidi Functional Materials Research Institute, Suzhou 215144, People's Republic of China
| |
Collapse
|
5
|
Moriyama K, Oka Y. Enantioselective Cascade Michael/Hemiaminal Formation of α,β-Unsaturated Iminoindoles with Aldehydes Using a Chiral Aminomethylpyrrolidine Catalyst Bearing a SO 2C 6F 5 Group as a Strongly Electron Withdrawing Arylsulfonyl Group. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katsuhiko Moriyama
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yukari Oka
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
6
|
Kumar D, Chaudhary D, Ishu K, Yadav S, Maurya NK, Kant R, Kuram MR. Copper-catalyzed cascade reaction of tryptamines with diazo compounds to access hexahydropyrroloindoline derivatives. Org Biomol Chem 2022; 20:8610-8614. [DOI: 10.1039/d2ob01635d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A Cu-catalyzed cyclopropanation/ring-opening/iminium cyclization of tryptamine derivatives with donor–acceptor diazo compounds is developed to furnish pyrroloindolines, creating three consecutive stereogenic centers.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhananjay Chaudhary
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Km Ishu
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Suman Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Naveen Kumar Maurya
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Maity A, Munda M, Niyogi S, Kumar N, Bisai A. Total syntheses of Hexahydropyrrolo[2,3-b]indole Alkaloids, (+)-pseudophrynamine 270 and (+)-pseudophrynamine 272A. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Kundu S, Munda M, Nandi R, Bisai A. Pd(0)-Catalyzed Deacylative Allylations (DaA) Strategy and Application in the Total Synthesis of Alkaloids. CHEM REC 2021; 21:3818-3838. [PMID: 34796643 DOI: 10.1002/tcr.202100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/12/2022]
Abstract
Natural product synthesis has been the prime focus for the development of new carbon-carbon bond forming transformations. In particular, the construction of molecules with all-carbon quaternary centers remain one of the most facinating targets. In this regard, transition-metal catalyzed processes have gained imporatnce owing to their mild nature. Towards this, Pd(0)-catalyzed decarboxylative allylations (DcA) is worth mentioning and has emerged as a convenient method for synthesis of molecules even in their enantioenriched form. However, in order to have a flexible approach that facilitate rapid production of derivatives by utilizing commercially available allyl alcohols, the concept of Pd(0)-catalyzed deacylative allylations (DaA) methodology gains popularity. In these reactions, the transfer of an acyl group has a functional role in activating the allylic alcohol (proelectrophile) toward reaction with Pd(0)-catalysts. We present here an Account on newly conceptualized deacylative allylations (DaA) methodology and its applications in the synthesis of various intermediates and building blocks. Further, its potential in the total synthesis of naturally occurring alkaloids have been summarized in this personal account.
Collapse
Affiliation(s)
- Sourav Kundu
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, MP, India
| | - Mintu Munda
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, MP, India
| | - Rhituparna Nandi
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462 066, MP, India
| | - Alakesh Bisai
- Department of Chemical Sciences, Indian Institution of Science Education and Research Kolkata Mohanpur Campus, Kalyani, Nadia, 741 246, WB, India
| |
Collapse
|
9
|
Chen Y, Song X, Gao L, Song Z. Intramolecular Sakurai Allylation of Geminal Bis(silyl) Enamide with Indolenine. A Diastereoselective Cyclization To Form Functionalized Hexahydropyrido[3,4- b]Indole. Org Lett 2021; 23:124-128. [PMID: 33346667 DOI: 10.1021/acs.orglett.0c03806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A fluoride-promoted intramolecular Sakurai allylation of geminal bis(silyl) enamide with indolenine has been developed. The reaction facilitates an efficient cyclization to give hexahydropyrido[3,4-b]indoles in good yields with high diastereoselectivity. The resulted cis, trans-stereochemistry further enables the ring-closing metathesis (RCM) reaction of two alkene moieties, giving a tetracyclic N-hetereocycle widely found as the core structure in akuammiline alkaloids.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xuanyi Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
10
|
Lombardi L, Bellini D, Bottoni A, Calvaresi M, Monari M, Kovtun A, Palermo V, Melucci M, Bandini M. Allylic and Allenylic Dearomatization of Indoles Promoted by Graphene Oxide by Covalent Grafting Activation Mode. Chemistry 2020; 26:10427-10432. [PMID: 32346922 DOI: 10.1002/chem.202001373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Indexed: 12/14/2022]
Abstract
The site-selective allylative and allenylative dearomatization of indoles with alcohols was performed under carbocatalytic regime in the presence of graphene oxide (GO, 10 wt % loading) as the promoter. Metal-free conditions, absence of stoichiometric additive, environmentally friendly conditions (H2 O/CH3 CN, 55 °C, 6 h), broad substrate scope (33 examples, yield up to 92 %) and excellent site- and stereoselectivity characterize the present methodology. Moreover, a covalent activation model exerted by GO functionalities was corroborated by spectroscopic, experimental and computational evidences. Recovering and regeneration of the GO catalyst through simple acidic treatment was also documented.
Collapse
Affiliation(s)
- Lorenzo Lombardi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Daniele Bellini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Andrea Bottoni
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Magda Monari
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Alessandro Kovtun
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Vincenzo Palermo
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
- Chalmers University of Technology, Industrial and Materials Science, Hörsalsvägen 7A, 412 96, Goteborg, Sweden
| | - Manuela Melucci
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
- Consorzio C.I.N.M.P.I.S., via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
11
|
|
12
|
Rossi‐Ashton JA, Clarke AK, Donald JR, Zheng C, Taylor RJK, Unsworth WP, You S. Iridium-Catalyzed Enantioselective Intermolecular Indole C2-Allylation. Angew Chem Int Ed Engl 2020; 59:7598-7604. [PMID: 32091146 PMCID: PMC7217203 DOI: 10.1002/anie.202001956] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 12/22/2022]
Abstract
The enantioselective intermolecular C2-allylation of 3-substituted indoles is reported for the first time. This directing group-free approach relies on a chiral Ir-(P, olefin) complex and Mg(ClO4 )2 Lewis acid catalyst system to promote allylic substitution, providing the C2-allylated products in typically high yields (40-99 %) and enantioselectivities (83-99 % ee) with excellent regiocontrol. Experimental studies and DFT calculations suggest that the reaction proceeds via direct C2-allylation, rather than C3-allylation followed by in situ migration. Steric congestion at the indole-C3 position and improved π-π stacking interactions have been identified as major contributors to the C2-selectivity.
Collapse
Affiliation(s)
| | | | | | - Chao Zheng
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences345 Lingling LuShanghai200032China
| | | | | | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences345 Lingling LuShanghai200032China
| |
Collapse
|
13
|
Biswas S, Kim H, Le Anh Cao K, Shin S. Enantioselective Dearomative Cyclization of Homotryptamines with Allenamides into Indolo[2,3‐
b
]quinolines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Soumen Biswas
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS)Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| | - Hanbyul Kim
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS)Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| | - Kiet Le Anh Cao
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS)Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| | - Seunghoon Shin
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS)Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| |
Collapse
|
14
|
Rossi‐Ashton JA, Clarke AK, Donald JR, Zheng C, Taylor RJK, Unsworth WP, You S. Iridium‐Catalyzed Enantioselective Intermolecular Indole C2‐Allylation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | - Chao Zheng
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | | | | | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
15
|
Zhang HJ, Gu Q, You SL. Ni-Catalyzed Intermolecular Allylic Dearomatization Reaction of Tryptophols and Tryptamines. Org Lett 2019; 21:9420-9424. [DOI: 10.1021/acs.orglett.9b03633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hui-Jun Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
16
|
Zhai Y, You SL, Ma S. Palladium-catalyzed intermolecular allenylation reactions of 2,3-disubstituted indoles and allenyl carbonate. Org Biomol Chem 2019; 17:7128-7130. [PMID: 31328763 DOI: 10.1039/c9ob01435g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed intermolecular allenylation of non-strained 2,3-disubstituted indoles and allenyl carbonate has been developed, providing convenient access to indolenines bearing an allene unit by taking advantage of the C-3 nucleophilicity of indoles. Decent yields and good functional group tolerance have been achieved with diverse indoles under mild conditions. Gram-scale reaction and various synthetic transformations have been demonstrated.
Collapse
Affiliation(s)
- Yizhan Zhai
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China. and Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| |
Collapse
|
17
|
Naresh Babu K, Kariyandi NR, Saheeda M. K. S, Kinthada LK, Bisai A. Lewis Acid-Catalyzed Malonate Addition onto 3-Hydroxy-2-oxindoles: Mechanistic Consideration and Synthetic Approaches to the Pyrroloindoline Alkaloids. J Org Chem 2018; 83:12664-12682. [DOI: 10.1021/acs.joc.8b02017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Naresh Babu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Nikhil Raj Kariyandi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Saina Saheeda M. K.
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Lakshmana K. Kinthada
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India
| |
Collapse
|