1
|
Käfer MG, Eder W, Pecak J, Stöger B, Pignitter M, Veiros LF, Kirchner K. Cr(II) and Cr(III) NCN pincer complexes: synthesis, structure, and catalytic reactivity. MONATSHEFTE FUR CHEMIE 2023; 154:1263-1273. [PMID: 37927401 PMCID: PMC10620270 DOI: 10.1007/s00706-023-03128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/13/2023] [Indexed: 11/07/2023]
Abstract
The synthesis, characterization, and reactivity of several new Cr(II) and Cr(III) complexes featuring an NCN pincer ligand with an arene backbone connected to amine donors NEt2 and NiPr2 via CH2-linkers is described. Reacting the in situ lithiated ligand precursor N(C-Br)NCH2-Et with [CrCl3(THF)3] resulted in the formation of the Cr(III) complex trans-[Cr(κ3NCN-NCNCH2-Et)(Cl)2(THF)]. Upon reaction of lithiated N(C-Br)NCH2-iPr with a suspension of anhydrous CrCl2, the Cr(II) complex [Cr(κ2NC-NCNCH2-iPr)2] is formed featuring two NCN ligands bound in κ2NC-fashion. In contrast, when lithiated N(C-Br)NCH2-iPr is reacted with a homogeneous solution of anhydrous CrX2 (X = Cl, Br), complexes [Cr(κ3NCN-NCNCH2-iPr)X] are obtained. Treatment of [Cr(κ3NCN-NCNCH2-iPr)Cl] with 1 equiv of PhCH2MgCl and LiCH2SiMe3 afforded the alkyl complexes [Cr(κ3NCN-NCNCH2-iPr)(CH2Ph)] and [Cr(κ3NCN-NCNCH2-iPr)(CH2SiMe3)]. All Cr(II) complexes exhibit effective magnetic moments in the range of 4.7-4.9 µB which is indicative for d4 high spin systems. If a solution of lithiated N(C-Br)NCH2-iPr is treated with CrCl2, followed by addition of an excess of Na[HB(Et)3], the dimeric complex [Cr(κ2NC-NCNCH2-iPr)(μ2-H)]2 is obtained bearing two bridging hydride ligands. [Cr(κ3NCN-NCNCH2-iPr)(CH2SiMe3)] turned out to be catalytically active for the hydrosilylation of ketones at room temperature with a catalyst loading of 1 mol%. X-ray structures of all complexes are presented. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s00706-023-03128-6.
Collapse
Affiliation(s)
- Matthias G. Käfer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Wolfgang Eder
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Jan Pecak
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Berthold Stöger
- X-Ray Center, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Luis F. Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisbon, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, 1060 Vienna, Austria
| |
Collapse
|
2
|
Cruz TFC, Veiros LF, Gomes PT. Hydrosilylation of Aldehydes and Ketones Catalyzed by a 2-Iminopyrrolyl Alkyl-Manganese(II) Complex. Inorg Chem 2021; 61:1195-1206. [PMID: 34962785 DOI: 10.1021/acs.inorgchem.1c03621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A well-defined and very active single-component manganese(II) catalyst system for the hydrosilylation of aldehydes and ketones is presented. First, the reaction of 5-(2,4,6-iPr3C6H2)-2-[N-(2,6-iPr2C6H3)formimino]pyrrolyl potassium (KL) and [MnCl2(Py)2] afforded the binuclear 2-iminopyrrolyl manganese(II) pyridine chloride complex [Mn2{κ2N,N'-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}2(Py)2(μ-Cl)2] 1. Subsequently, the alkylation reaction of complex 1 with LiCH2SiMe3 afforded the respective (trimethylsilyl)methyl-Mn(II) complex [Mn{κ2N,N'-5-(2,4,6-iPr3C6H2)-NC4H2-2-C(H)═N(2,6-iPr2C6H3)}(Py)CH2SiMe3] 2 in a good yield. Complexes 1 and 2 were characterized by elemental analysis, 1H NMR spectroscopy, Evans' method, FTIR spectroscopy, and single-crystal X-ray diffraction. While the crystal structure of complex 1 has been identified as a binuclear entity, in which the Mn(II) centers present pentacoordinate coordination spheres, that of complex 2 corresponds to a monomer with a distorted tetrahedral coordination geometry. Complex 2 proved to be a very active precatalyst for the atom-economic hydrosilylation of several aldehydes and ketones under very mild conditions, with a maximum turnover frequency of 95 min-1, via a silyl-Mn(II) mechanistic route, as asserted by a combination of experimental and theoretical efforts, the respective silanes were cleanly converted to the respective alcoholic products in high yields.
Collapse
Affiliation(s)
- Tiago F C Cruz
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Luís F Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro T Gomes
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Huang Y, Jiang W, Xi X, Li Y, Wang X, Yang M, Zhang Z, Su M, Zhu H. Versatile Reaction Patterns of Phosphanylhydrosilylalkyne with B(C
6
F
5
)
3
: A Remarkable Group Substitution Effect. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanting Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| | - Wenjun Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| | - Xin Xi
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| | - Yan Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University 311121 Hangzhou China
| | - Xiaoping Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| | - Ming‐Chung Yang
- Department of Applied Chemistry National Chiayi University 60004 Chiayi Taiwan
| | - Zheng‐Feng Zhang
- Department of Applied Chemistry National Chiayi University 60004 Chiayi Taiwan
| | - Ming‐Der Su
- Department of Applied Chemistry National Chiayi University 60004 Chiayi Taiwan
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 80708 Kaohsiung Taiwan
| | - Hongping Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University 361005 Xiamen China
| |
Collapse
|
4
|
Uvarov VM, de Vekki DA. Recent progress in the development of catalytic systems for homogenous asymmetric hydrosilylation of ketones. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Vinum MG, Voigt L, Bell C, Mihrin D, Larsen RW, Clark KM, Pedersen KS. Evidence for Non-Innocence of a β-Diketonate Ligand. Chemistry 2020; 26:2143-2147. [PMID: 31721307 DOI: 10.1002/chem.201904899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Indexed: 11/07/2022]
Abstract
β-Diketonates, such as acetylacetonate, are amongst the most common bidentate ligands towards elements across the entire periodic table and are considered wholly redox-inactive in their complexes. Herein we show that complexation of 1,1,1,5,5,5-hexafluoroacetylacetonate (hfac- ) to CrII spontaneously affords CrIII and a reduced β-diketonate radical ligand scaffold, as evidenced by crystallographic analysis, magnetic measurements, optical spectroscopy, reactivity studies, and DFT calculations. The possibility of harnessing β-diketonates as electron reservoirs opens up possibilities for new metal-ligand concerted reactivity in the ubiquitous β-diketonate coordination chemistry.
Collapse
Affiliation(s)
- Morten Gotthold Vinum
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800, Kgs. Lyngby, Denmark
| | - Laura Voigt
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800, Kgs. Lyngby, Denmark
| | - Colby Bell
- Department of Chemistry, The University of Memphis, Memphis, TN, USA
| | - Dmytro Mihrin
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800, Kgs. Lyngby, Denmark
| | - René Wugt Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800, Kgs. Lyngby, Denmark
| | | | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Xiang Y, Ge Q, Wu S, Zheng X, Yang Z. Synthesis and application in asymmetric catalysis of P-stereogenic pincer–metal complexes. RSC Adv 2020; 10:9563-9578. [PMID: 35497199 PMCID: PMC9050166 DOI: 10.1039/d0ra00377h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
P-stereogenic pincer: synthesis and application in asymmetric catalysis.
Collapse
Affiliation(s)
- Yijun Xiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research
- University of South China
- Hengyang
- PR China
| | - Qianyi Ge
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research
- University of South China
- Hengyang
- PR China
| | - Shulei Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research
- University of South China
- Hengyang
- PR China
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research
- University of South China
- Hengyang
- PR China
| | - Zehua Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research
- University of South China
- Hengyang
- PR China
| |
Collapse
|
7
|
Thompson CV, Tonzetich ZJ. Pincer ligands incorporating pyrrolyl units: Versatile platforms for organometallic chemistry and catalysis. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Halcrow MA. Manipulating metal spin states for biomimetic, catalytic and molecular materials chemistry. Dalton Trans 2020; 49:15560-15567. [DOI: 10.1039/d0dt01919d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The relationship between ligand design and spin state in base metal compounds is surveyed. Implications and applications of these principles for light-harvesting dyes, catalysis and materials chemistry are summarised.
Collapse
|
9
|
Himmelbauer D, Stöger B, Veiros LF, Pignitter M, Kirchner K. Cr(II) and Cr(I) PCP Pincer Complexes: Synthesis, Structure, and Catalytic Reactivity. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Himmelbauer
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Berthold Stöger
- X-Ray Center, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Luis F. Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais No. 1, 1049-001 Lisboa, Portugal
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| |
Collapse
|
10
|
Beddoe RH, Andrews KG, Magné V, Cuthbertson JD, Saska J, Shannon-Little AL, Shanahan SE, Sneddon HF, Denton RM. Redox-neutral organocatalytic Mitsunobu reactions. Science 2019; 365:910-914. [DOI: 10.1126/science.aax3353] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/09/2019] [Indexed: 11/02/2022]
Abstract
Nucleophilic substitution reactions of alcohols are among the most fundamental and strategically important transformations in organic chemistry. For over half a century, these reactions have been achieved by using stoichiometric, and often hazardous, reagents to activate the otherwise unreactive alcohols. Here, we demonstrate that a specially designed phosphine oxide promotes nucleophilic substitution reactions of primary and secondary alcohols in a redox-neutral catalysis manifold that produces water as the sole by-product. The scope of the catalytic coupling process encompasses a range of acidic pronucleophiles that allow stereospecific construction of carbon-oxygen and carbon-nitrogen bonds.
Collapse
|
11
|
Hirscher NA, Perez Sierra D, Agapie T. Robust Chromium Precursors for Catalysis: Isolation and Structure of a Single-Component Ethylene Tetramerization Precatalyst. J Am Chem Soc 2019; 141:6022-6029. [PMID: 30871318 DOI: 10.1021/jacs.9b01387] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have introduced a new class of stable organometallic Cr reagents (compounds 1-4) that are readily prepared, yet reactive enough to serve as precursors. They were used for ethylene tetramerization catalysis following stoichiometric activation by in situ protonation. This study highlights the importance of balancing stability with reactivity in generating an organometallic precursor that is useful in catalysis. Moreover, precursor 4 allowed for the isolation and crystallographic characterization of a room-temperature stable cationic species, (PNP)CrR2+ (R = o-C6H4(CH2)2OMe, PNP = iPrN(PPh2)2). This complex (5) may be used as a single component precatalyst, without any alkylaluminum reagents. This result provides an unprecedented level of insight into the kind of structures that must be produced from more complicated activation processes.
Collapse
Affiliation(s)
- Nathanael A Hirscher
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard , MC 127-72, Pasadena , California 91125 , United States
| | - Danny Perez Sierra
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard , MC 127-72, Pasadena , California 91125 , United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering , California Institute of Technology , 1200 East California Boulevard , MC 127-72, Pasadena , California 91125 , United States
| |
Collapse
|
12
|
Labrum NS, Pink M, Chen C, Caulton KG. Reactivity of an Unusual Divalent Chromium Aggregate Supported by a Multifunctional Bis(pyrazolate) Pincer Ligand. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicholas S. Labrum
- Department of Chemistry and the Molecular Structure Center Indiana University Bloomington 47405 Indiana USA
| | - Maren Pink
- Department of Chemistry and the Molecular Structure Center Indiana University Bloomington 47405 Indiana USA
| | - Chun‐Hsing Chen
- Department of Chemistry and the Molecular Structure Center Indiana University Bloomington 47405 Indiana USA
| | - Kenneth G. Caulton
- Department of Chemistry and the Molecular Structure Center Indiana University Bloomington 47405 Indiana USA
| |
Collapse
|
13
|
Martínez-Ferraté O, Chatterjee B, Werlé C, Leitner W. Hydrosilylation of carbonyl and carboxyl groups catalysed by Mn(i) complexes bearing triazole ligands. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01738k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese(i) complexes bearing readily accessible triazole ligands are effective catalysts for the hydrosilylation of carbonyl and carboxyl compounds.
Collapse
Affiliation(s)
| | - Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion
- Mülheim an der Ruhr
- Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion
- Mülheim an der Ruhr
- Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion
- Mülheim an der Ruhr
- Germany
- Institut für Technische und Makromolekulare Chemie (ITMC)
- RWTH Aachen University
| |
Collapse
|
14
|
Alig L, Fritz M, Schneider S. First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands. Chem Rev 2018; 119:2681-2751. [PMID: 30596420 DOI: 10.1021/acs.chemrev.8b00555] [Citation(s) in RCA: 531] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of 3d metals in de/hydrogenation catalysis has emerged as a competitive field with respect to "traditional" precious metal catalyzed transformations. The introduction of functional pincer ligands that can store protons and/or electrons as expressed by metal-ligand cooperativity and ligand redox-activity strongly stimulated this development as a conceptual starting point for rational catalyst design. This review aims at providing a comprehensive picture of the utilization of functional pincer ligands in first-row transition metal hydrogenation and dehydrogenation catalysis and related synthetic concepts relying on these such as the hydrogen borrowing methodology. Particular emphasis is put on the implementation and relevance of cooperating and redox-active pincer ligands within the mechanistic scenarios.
Collapse
Affiliation(s)
- Lukas Alig
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Maximilian Fritz
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| | - Sven Schneider
- Universität Göttingen , Institut für Anorganische Chemie , Tammannstrasse 4 , D-37077 Göttingen , Germany
| |
Collapse
|