1
|
Maddocks J, Mahesh M, Sampani SI, Dixon AC, Nielsen CDT, Kumar P, Akien GR, Spencer J, Abdul-Sada A, Turner JFC, Spivey AC, Kostakis GE. Single enantiomer propeller-shaped polynuclear complexes as catalysts-proof-of-concept for enantioinduction in a Michael addition reaction. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241537. [PMID: 40151485 PMCID: PMC11947762 DOI: 10.1098/rsos.241537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 03/29/2025]
Abstract
We report a family of propeller-shaped polynuclear metal complexes whose overall chirality is dictated by a single stereogenic centre within their component amino alcohol-ligand. These topologically intriguing complexes are readily prepared in enantiomerically pure form and are shown here to catalyse the conjugate addition of barbituric acids and their derivatives to nitroalkenes, with a catalyst loading of 1 mol%. Although only low levels of enantioinduction are observed, control experiments indicate that the enantioselectivity is dictated by the overall topology of the complex and not governed by binding to the tetrametallic entity, heralding a potentially new mode of catalysis.
Collapse
Affiliation(s)
- Joe Maddocks
- Department of Chemistry, University of Sussex, Brighton, UK
| | - Mohan Mahesh
- Department of Chemistry, Imperial College London, London, UK
| | | | | | | | - Prashant Kumar
- Department of Chemistry, University of Sussex, Brighton, UK
| | | | - John Spencer
- Department of Chemistry, University of Sussex, Brighton, UK
| | | | | | - Alan C. Spivey
- Department of Chemistry, Imperial College London, London, UK
| | | |
Collapse
|
2
|
Mhaske K, Gangai S, Taneja N, Narayan R. Two-Fold Oxidative Coupling of Furan with Indole Provides Modular Access to a New Class of Tetra-(Hetero)Arylated Furans with Up to Four Different Substituents. Chemistry 2024; 30:e202402929. [PMID: 39268636 DOI: 10.1002/chem.202402929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Highly arylated propeller-shaped heteroarenes constitute an intriguing class of molecular scaffolds for material science applications. Among these, tetraarylated furans demonstrate differentiated properties as compared to other similar heterocyclic cores. The synthetic complexity to access tetraarylated furans increases significantly with increasing number of different peripheral aryl groups. There are only a very limited number of methodologies available to access furans with four different (hetero)aryl substituents. Notably, none of these involve direct oxidative coupling on the furan core as the method of choice. Herein, we report the first methodology based on a sequential two-fold oxidative C-C coupling of furans with indoles to access bis(indolyl)furans (BIFs) - a new class of 'extremely congested' tetra-(hetero)arylated furans with up to four different substituents. The reaction is mediated by inexpensive, earth-abundant FeCl3⋅6H2O and displays high efficiency, wide substrate scope, modularity and aqueous compatibility. Moreover, we also present the first validation of the distinct aggregation-caused quenching (ACQ) property of the tetraarylated furans beyond only phenyls as peripheral groups and disclose new mechanistic underpinnings for the same.
Collapse
Affiliation(s)
- Krishna Mhaske
- School of Chemical & Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Shon Gangai
- School of Chemical & Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| | - Neha Taneja
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Rishikesh Narayan
- School of Chemical & Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Farmagudi, Goa, 403401, India
| |
Collapse
|
3
|
Kostakis GE. Chemical Chartographisis: a contemporary perspective in molecular design and synthesis. Dalton Trans 2023. [PMID: 38009065 DOI: 10.1039/d3dt02459h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The use of flexible molecular systems in solution, without strictly controlling their behaviour, has frequently been productive. Their potential could increase by a more holistic view of the reaction(s) process(es) in which they are involved. In this perspective, we introduce a broader approach - "Chemical Chartographisis" - and discuss three projects in detail to illustrate its potential. The topics involve bimetallic 3d/4f species and coordination compounds built from benzotriazole-based and (a)symmetric salan ligands and focus on catalytic and, in less detail, biological-related examples.
Collapse
Affiliation(s)
- George E Kostakis
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK.
| |
Collapse
|
4
|
Audsley G, Carpenter H, Essien NB, Lai-Morrice J, Al-Hilaly Y, Serpell LC, Akien GR, Tizzard GJ, Coles SJ, Ulldemolins CP, Kostakis GE. Chiral Co 3Y Propeller-Shaped Chemosensory Platforms Based on 19F-NMR. Inorg Chem 2023; 62:2680-2693. [PMID: 36716401 PMCID: PMC9930122 DOI: 10.1021/acs.inorgchem.2c03737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two propeller-shaped chiral CoIII3YIII complexes built from fluorinated ligands are synthesized and characterized by single-crystal X-ray diffraction (SXRD), IR, UV-vis, circular dichroism (CD), elemental analysis, thermogravimetric analysis (TGA), electron spray ionization mass spectroscopy (ESI-MS), and NMR (1H, 13C, and 19F). This work explores the sensing and discrimination abilities of these complexes, thus providing an innovative sensing method using a 19F NMR chemosensory system and opening new directions in 3d/4f chemistry. Control experiments and theoretical studies shed light on the sensing mechanism, while the scope and limitations of this method are discussed and presented.
Collapse
Affiliation(s)
- Gabrielle Audsley
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Harry Carpenter
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Nsikak B. Essien
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - James Lai-Morrice
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK
| | - Youssra Al-Hilaly
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK,Chemistry
Department, College of Science, Mustansiriyah
University, Baghdad 10001, Iraq
| | - Louise C. Serpell
- Sussex
Neuroscience, School of Life Sciences, University
of Sussex, Brighton BN1 9QG, UK
| | - Geoffrey R. Akien
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Graham J. Tizzard
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | - Simon J. Coles
- UK
National Crystallography Service, Chemistry, University of Southampton, Southampton SO1 71BJ, UK
| | | | - George E. Kostakis
- Department
of Chemistry, School of Life Sciences, University
of Sussex, Brighton BN1 9QJ, UK,
| |
Collapse
|
5
|
Tsukada T, Shoji Y, Takenouchi K, Taka H, Fukushima T. A carbon-functionality-appended diborylacetylene available for a component of organic synthesis and OLEDs. Chem Commun (Camb) 2022; 58:4973-4976. [PMID: 35373797 DOI: 10.1039/d2cc01159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present new 1,2-diborylacetylene derivatives with planar 9-oxa-10-boraanthracene termini, which display excellent stability to allow usual handling and even thermal evaporation for the preparation of thin films for OLEDs, and also undergo typical reactions of alkynes such as the Diels-Alder reaction.
Collapse
Affiliation(s)
- Tetsuyoshi Tsukada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan. .,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan. .,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kumiko Takenouchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
| | - Hideo Taka
- Konica Minolta, Ishikawa-cho, Hachioji, Tokyo 192-8505, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan. .,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
6
|
Mala R, Divya D, Vijayan P, Narayanasamy M, Thennarasu S. Two Imidazo[1,2‐a]pyridine Congeners Show Aggregation‐Induced Emission (AIE): Exploring AIE Potential for Sensor and Imaging Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202103408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramanjaneyulu Mala
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| | - Dhakshinamurthy Divya
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| | - Priyadharshni Vijayan
- Biocontrol and microbial Metabolites Lab, Centre for Advanced Studies in Botany University of Madars Guindy Campus Chennai- 600025 India
| | - Mathivanan Narayanasamy
- Biocontrol and microbial Metabolites Lab, Centre for Advanced Studies in Botany University of Madars Guindy Campus Chennai- 600025 India
| | - Sathiah Thennarasu
- Organic and bioorganic chemistry laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-Central Leather Research Institute, Adyar Chennai 600 020 India
| |
Collapse
|
7
|
Shoji Y, Kashida J, Fukushima T. Bringing out the potential of organoboron compounds by designing the chemical bonds and spaces around boron. Chem Commun (Camb) 2022; 58:4420-4434. [DOI: 10.1039/d2cc00653g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the structures, reactivity and properties of organoboron compounds stem from the electron deficiency and low electronegativity of boron, the design of the chemical bonds attached to boron as well...
Collapse
|
8
|
Ye N, Pei YR, Han Q, Lee M, Jin LY. Self-assembly of propeller-shaped amphiphilic molecules: control over the supramolecular morphology and photoproperties of their aggregates. SOFT MATTER 2021; 17:6661-6668. [PMID: 34160543 DOI: 10.1039/d1sm00661d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aggregation-induced emission (AIE) effect is an important feature for luminescence studies, which can offer a broader range of applications for fluorescent materials. Herein, we report the morphological control and photoproperties of amphipathic propeller-shaped rod-coil molecules based on a benzene-1,3,5-tricarboxamide (BTA) unit, which restricts the intramolecular rotation and leads to the AIE effect during the self-assembly process. Investigations on the assembly of these molecules have revealed that tetragonal perforated lamella, hexagonal columnar, body-centered tetragonal micellar, and hexagonal close-packed nanostructures were spontaneously formed in the solid-state. In the solution-state, these molecules assemble into nanosheet-like aggregates, bowl-like objects, and spherical nanoparticles, respectively. The morphology of the molecular aggregates can be controlled by modifying the molecular chain length or introducing lateral methyl groups in the coil chain. Notably, these molecular assemblies exhibit strong AIE phenomena in a mixed THF/H2O solution and can be used as smart soft materials due to the restriction of their intramolecular motion.
Collapse
Affiliation(s)
- Nan Ye
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Yi-Rong Pei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Qingqing Han
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| | - Myongsoo Lee
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
9
|
Murata Y, Matsunagi K, Kashida J, Shoji Y, Özen C, Maeda S, Fukushima T. Observation of Borane–Olefin Proximity Interaction Governing the Structure and Reactivity of Boron‐Containing Macrocycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yukihiro Murata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8502 Japan
| | - Kenta Matsunagi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8502 Japan
| | - Junki Kashida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8502 Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8502 Japan
| | - Cihan Özen
- Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD) Hokkaido University Sapporo 060-8510 Japan
- Department of Chemistry Hokkaido University Sapporo 060-8510 Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD) Hokkaido University Sapporo 060-8510 Japan
- Department of Chemistry Hokkaido University Sapporo 060-8510 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8502 Japan
| |
Collapse
|
10
|
Murata Y, Matsunagi K, Kashida J, Shoji Y, Özen C, Maeda S, Fukushima T. Observation of Borane-Olefin Proximity Interaction Governing the Structure and Reactivity of Boron-Containing Macrocycles. Angew Chem Int Ed Engl 2021; 60:14630-14635. [PMID: 33860607 DOI: 10.1002/anie.202103512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 11/06/2022]
Abstract
While attractive interactions between borane and olefin have been postulated to trigger various boron-mediated organic transformations, proximity structures of these functional groups, other than the formation of weak van der Waals complexes, have never been directly observed. Here we show that a close intramolecular borane-olefin interaction operates in macrocyclic systems containing borane and olefinic groups obtained by multi-step 1,2-carboboration between a strained alkyne and 9-borafluorene derivatives. Depending on Lewis acidity of the borane moiety and the size of the macrocycles, the magnitude of interaction changes, resulting in different reaction modes. The whole picture of the multi-step reactions has been revealed experimentally with theoretical supports. The present finding may not only provide a deeper understanding of the fundamental boron-mediated interaction but also lead to the development of new organic transformations involving molecular activation by boranes.
Collapse
Affiliation(s)
- Yukihiro Murata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
| | - Kenta Matsunagi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
| | - Junki Kashida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
| | - Cihan Özen
- Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD), Hokkaido University, Sapporo, 060-8510, Japan.,Department of Chemistry, Hokkaido University, Sapporo, 060-8510, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery, (WPI-ICReDD), Hokkaido University, Sapporo, 060-8510, Japan.,Department of Chemistry, Hokkaido University, Sapporo, 060-8510, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
| |
Collapse
|
11
|
Shoji Y, Kashida J, Fukushima T. Organic Transformations Using Electron-Deficient Boron Compounds. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshiaki Shoji
- Laboratory for Chemistry and Life Science (CLS), Institute of Innovative Research, Tokyo Institute of Technology
| | | | - Takanori Fukushima
- Laboratory for Chemistry and Life Science (CLS), Institute of Innovative Research, Tokyo Institute of Technology
| |
Collapse
|
12
|
Kashida J, Shoji Y, Fukushima T. Synthesis and Reactivity of Cyclic Borane-Amidine Conjugated Molecules Formed by Direct 1,2-Carboboration of Carbodiimides with 9-Borafluorenes. Chem Asian J 2019; 14:1879-1885. [PMID: 30715795 DOI: 10.1002/asia.201900047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/04/2019] [Indexed: 11/07/2022]
Abstract
Efficient 1,2-carboboration reactions to the C=N bond of carbodiimides with 9-borafluorenes, which give rise to cyclic borane-amidine conjugates with a seven-membered BNC5 ring, are reported. The resulting cyclic borane-amidine conjugates can be hydrolyzed into an acyclic bifunctional biaryl compound carrying both boronic acid and amidine groups, rendering the utility of the two-step protocol for the synthesis of multi-functionalized molecular systems with a potential as a supramolecular building block. Furthermore, the conjugated structure of the cyclic boron-amidine compounds can be changed upon alkylation of the boron atom that increases the coordination number of boron. The combination of Lewis acid (borane) and conjugated base (amidine) provides rich structural diversity of heteroatom-containing π-conjugated systems.
Collapse
Affiliation(s)
- Junki Kashida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
13
|
Özen C, Shoji Y, Fukushima T, Maeda S. A Theoretical Study on the Mechanism of the Oxidative Deborylation/C-C Coupling Reaction of Borepin Derivatives. J Org Chem 2019; 84:1941-1950. [PMID: 30676027 DOI: 10.1021/acs.joc.8b02917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-electron oxidation of borepin derivatives that consists of a boron-containing seven-membered ring has been reported to cause deborylation/C-C coupling, yielding aromatic compounds. The reaction can be achieved not only by transition metal compounds but also by oxidants without transition metal such as O2 and other organic compounds. Despite numerous experimental attempts, the mechanism of this peculiar reaction as well as the fate of the BCl part eliminated from borepin remain unclear to date. Based on theoretical approaches using the artificial force induced reaction method, here we address the mechanism of the unusual boron-mediated C-C coupling. For this purpose, two borepin derivatives (1 and 35), bearing ethyl and phenyl groups, respectively, were used as reactants, and FeCl3/MeNO2 and O2 were chosen as oxidants. The calculations revealed reaction pathways that provided an overall picture of the mechanism of the target reaction, which features four key steps, namely, (i) quaternization of the boron atom by the coordination of oxidant, (ii) intersystem crossing, (iii) skeletal rearrangement to form a six-membered ring, and (iv) elimination of a boron moiety. The intrinsic nature of boron, i.e., a strong tendency to accept a coordination ligand even under oxidative conditions, is responsible for the oxidative deborylation/C-C coupling of borepin.
Collapse
Affiliation(s)
- Cihan Özen
- Department of Chemistry , Hokkaido University , Sapporo 060-8510 , Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , Yokohama 226-8503 , Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research , Tokyo Institute of Technology , Yokohama 226-8503 , Japan
| | - Satoshi Maeda
- Department of Chemistry , Hokkaido University , Sapporo 060-8510 , Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) , Hokkaido University , Sapporo 001-0021 , Japan.,Research and Services Division of Materials Data and Integrated System (MaDIS) , National Institute for Materials Science (NIMS) , Tsukuba 305-0044 , Japan
| |
Collapse
|