1
|
Pan C, Chen D. Photocatalytic Consecutive Photoinduced Electron Transfer-Enabled C(sp 3)-H Pyridylation of Dihydroquinoxalin-2-ones. J Org Chem 2024; 89:17587-17597. [PMID: 39576665 DOI: 10.1021/acs.joc.4c02328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A photocatalytic decyanative C(sp3)-H pyridination of dihydroquinoxalin-2-ones with 4-cyanopyridines was developed by utilizing 4CzIPN as the photocatalyst. Mechanism studies show that this organophotocatalytic direct C(sp3)-H pyridination undergoes a radical-radical cross-coupling pathway promoted by consecutive photoinduced electron transfer.
Collapse
Affiliation(s)
- Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Dongdong Chen
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
2
|
Pan C, Xiang C, Yu JT. Organophotocatalytic pyridination of N-arylglycines with 4-cyanopyridines by decarboxylative and decyanative radical-radical coupling. Org Biomol Chem 2024; 22:7806-7810. [PMID: 39254473 DOI: 10.1039/d4ob01257g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A photocatalytic decarboxylative aminoalkylation of 4-cyanopyridines with N-arylglycines is achieved, providing 4-(aminomethyl)pyridine derivatives in moderate to good yields. This organic photocatalytic reaction undergoes a radical-radical cross-coupling process under redox-neutral conditions, featuring simple operation, readily available N-arylglycines and a broad substrate scope. Mechanistic investigations indicated that a proton-coupled electron-transfer process was involved to enable the single electron transfer between the reduced photocatalyst and 4-cyanopyridine in the presence of N-arylglycines.
Collapse
Affiliation(s)
- Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Chengli Xiang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
3
|
Li T, Sun Z, Zhang S, Ma Q, Chen Y, Yuan Y, Jia X. Single-Electron Reduction of "Push-Pull" C-C Single Bond and Decyanation Using Tertiary Amines as the Organic Electron Donor. J Org Chem 2024; 89:2516-2524. [PMID: 38319086 DOI: 10.1021/acs.joc.3c02542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Using commercially available tertiary amines as an organic electron donor (OED), the reduction of "push-pull" C-C single bond and reductive decyanation of tetrahydroisoquinolines were realized. These reactions exhibited higher reaction efficiency and better functional group tolerance compared with those of metallic reductants, and the mechanistic study indicated that a radical intermediate was involved in the reduction of the C-C single bond, which provides a new way to the OED-enabled mild reduction.
Collapse
Affiliation(s)
- Tong Li
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Zheng Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
- Economic Development Bureau, Jiangsu Hangji Hi-tech Industrial Development Zone, Yangzhou 225111, Jiangsu, China
| | - Shuwei Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Qiyuan Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Yuqin Chen
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Yu Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Xiaodong Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| |
Collapse
|
4
|
Jiang Y, Liu D, Zhang L, Qin C, Li H, Yang H, Walsh PJ, Yang X. Efficient construction of functionalized pyrroloindolines through cascade radical cyclization/intermolecular coupling. Chem Sci 2024; 15:2205-2210. [PMID: 38332810 PMCID: PMC10848758 DOI: 10.1039/d3sc05210a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
Pyrroloindolines are important structural units in nature and the pharmaceutical industry, however, most approaches to such structures involve transition-metal or photoredox catalysts. Herein, we describe the first tandem SET/radical cyclization/intermolecular coupling between 2-azaallyl anions and indole acetamides. This method enables the transition-metal-free synthesis of C3a-substituted pyrroloindolines under mild and convenient conditions. The synthetic utility of this transformation is demonstrated by the construction of an array of C3a-methylamine pyrroloindolines with good functional group tolerance and yields. Gram-scale sequential one-pot synthesis and hydrolysis reactions demonstrate the potential synthetic utility and scalability of this approach.
Collapse
Affiliation(s)
- Yonggang Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Dongxiang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Lening Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Cuirong Qin
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Hui Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Haitao Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104 USA
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
5
|
Lan J, Yu W, You K, Xu M, Zhang B, Wang Y, Wang T, Luo J. Dehalogenative Arylation of Unactivated Alkyl Halides via Electroreduction. Org Lett 2023; 25:7434-7439. [PMID: 37768735 DOI: 10.1021/acs.orglett.3c03036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Herein, a facile and efficient dehalogenative arylation of unactivated alkyl halides enabled by electrochemical reductive coupling is developed, affording a series of C(sp2)-C(sp3) products in moderate to good yields. This protocol proceeds in the absence of transition metal catalysts and redox mediators. The reaction features mild conditions, broad substrate scope, and high tolerance of functional groups and is demonstrated to be applicable for gram-scale synthesis and late-stage functionalization of natural products.
Collapse
Affiliation(s)
- Jinping Lan
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Weijie Yu
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Ke You
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Mengyu Xu
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Bin Zhang
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yuanquan Wang
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Tao Wang
- Jiangxi Province Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Jin Luo
- Analytical and Testing Center, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
6
|
Keita H, Meek SJ. Synthesis of Quaternary and Tertiary Carbon-Substituted Arenes by Lewis Base Promoted Site-Selective Coupling with Allylic Nucleophiles. Angew Chem Int Ed Engl 2023; 62:e202306277. [PMID: 37350059 PMCID: PMC10529890 DOI: 10.1002/anie.202306277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023]
Abstract
A practical method for the preparation of quaternary and tertiary allyl-substituted heteroarenes by site-selective couplings of heteroaryl nitriles and allylic nucleophiles is disclosed. Transformations utilize readily accessible stable reagents, proceed in the presence of a Lewis base activator, and undergo aryl-C(sp3 ) quaternary and tertiary carbon formation with high γ-selectivity (up to >98 : 2 γ : α).
Collapse
Affiliation(s)
- Hawa Keita
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599-3290, Chapel Hill, NC, USA
| | - Simon J Meek
- Department of Chemistry, University of North Carolina at Chapel Hill, 27599-3290, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Jiang Y, Liu D, Rotella ME, Deng G, Liu Z, Chen W, Zhang H, Kozlowski MC, Walsh PJ, Yang X. Net-1,2-Hydrogen Atom Transfer of Amidyl Radicals: Toward the Synthesis of 1,2-Diamine Derivatives. J Am Chem Soc 2023; 145:16045-16057. [PMID: 37441806 PMCID: PMC10411589 DOI: 10.1021/jacs.3c04376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Hydrogen atom transfer (HAT) processes are among the most useful approaches for the selective construction of C(sp3)-C(sp3) bonds. 1,5-HAT with heteroatom-centered radicals (O•, N•) have been well established and are favored relative to other 1,n-HAT processes. In comparison, net 1,2-HAT processes have been observed infrequently. Herein, the first amidyl radicalls are reported that preferentially undergo a net 1,2-HAT over 1,5-HAT. Beginning with single electron transfer from 2-azaallyl anions to N-alkyl N-aryloxy amides, the latter generate amidyl radicals. The amidyl radical undergoes a net-1,2-HAT to generate a C-centered radical that participates in an intermolecular radical-radical coupling with the 2-azaallyl radical to generate 1,2-diamine derivatives. Mechanistic and EPR experiments point to radical intermediates. Density functional theory calculations provide support for a base-assisted, stepwise-1,2-HAT process. It is proposed that the generation of amidyl radicals under basic conditions can be greatly expanded to access α-amino C-centered radicals that will serve as valuable synthetic intermediates.
Collapse
Affiliation(s)
- Yonggang Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Dongxiang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Madeline E. Rotella
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104, United States
| | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Zhengfen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Marisa C. Kozlowski
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104, United States
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104, United States
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| |
Collapse
|
8
|
Cho HJ, Kim YL, Kim JH. Rh(II)-Catalyzed C–N Bond Formation Using Enynones and N–H Imines: An Approach to Diarylmethylamines. J Org Chem 2022; 87:16424-16435. [DOI: 10.1021/acs.joc.2c02119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ho-Jun Cho
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828, Jinju, Korea
| | - Ye Lim Kim
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828, Jinju, Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Four), Research Institute of Natural Science, Gyeongsang National University, 52828, Jinju, Korea
| |
Collapse
|
9
|
Tang L, Jiang S, Huang X, Song Z, Wang JB, Ma M, Chen B, Ma Y. Cascade of C(sp 2)-H Addition to Carbonyl and C(sp 2)-CN/C(sp 2)-H Coupling Enabled by Brønsted Acid: Construction of Benzo[ a]carbazole Frameworks. Org Lett 2022; 24:3232-3237. [PMID: 35475641 DOI: 10.1021/acs.orglett.2c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report an unprecedented cascade reaction of C(sp2)-H addition to carbonyl and the C(sp2)-CN/C(sp2)-H coupling of 2-(2-oxo-2-arylethyl)benzonitriles with indoles enabled by commercially available TsOH·H2O. The protocol represents the first metal-free C(sp2)-CN/C(sp2)-H coupling, affording a new route for the synthesis of various benzo[a]carbazole derivatives with a broad substrate scope, high yields, and simple conditions.
Collapse
Affiliation(s)
- Ling Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Shuangshuang Jiang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Xinmiao Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Zhiyong Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Jian-Bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of Phytochemistry R&D of Hunan Province, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| |
Collapse
|
10
|
Ding W, Sheng J, Li J, Cheng X. Electroreductive 4-pyridylation of unsaturated compounds using gaseous ammonia as a hydrogen source. Org Chem Front 2022. [DOI: 10.1039/d2qo00132b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By using ammonia as a hydrogen source, electrochemical pyridylation of unsaturated compounds is achieved with more than 50 examples. In particular, the β-keto ester could be converted to the corresponding tertiary β-hydroxyl ester for the first time.
Collapse
Affiliation(s)
- Weijie Ding
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| | - Jie Sheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| | - Jin Li
- Jiangsu Provincial Engineering Laboratory of Advanced Materials for Salt Chemical Industry, College of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Reidl TW, Bandar JS. Lewis Basic Salt-Promoted Organosilane Coupling Reactions with Aromatic Electrophiles. J Am Chem Soc 2021; 143:11939-11945. [PMID: 34314159 PMCID: PMC8510683 DOI: 10.1021/jacs.1c05764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lewis basic salts promote benzyltrimethylsilane coupling with (hetero)aryl nitriles, sulfones, and chlorides as a new route to 1,1-diarylalkanes. This method combines the substrate modularity and selectivity characteristic of cross-coupling with the practicality of a base-promoted protocol. In addition, a Lewis base strategy enables a complementary scope to existing methods, employs stable and easily prepared organosilanes, and achieves selective arylation in the presence of acidic functional groups. The utility of this method is demonstrated by the synthesis of pharmaceutical analogues and its use in multicomponent reactions.
Collapse
Affiliation(s)
- Tyler W. Reidl
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S. Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
12
|
Tong S, Li K, Ouyang X, Song R, Li J. Recent advances in the radical-mediated decyanative alkylation of cyano(hetero)arene. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
13
|
Wang J, Deng G, Liu C, Chen Z, Yu K, Chen W, Zhang H, Yang X. Transition Metal‐Free Synthesis of α‐Aminophosphine Oxides through C(
sp
3
)−P Coupling of 2‐Azaallyls. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Guogang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Chunxiang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Zhuo Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Kaili Yu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and TechnologyYunnan University Kunming 650091 People's Republic of China
| |
Collapse
|
14
|
Zhong LJ, Wang HY, Ouyang XH, Li JH, An DL. Benzylic C–H heteroarylation of N-(benzyloxy)phthalimides with cyanopyridines enabled by photoredox 1,2-hydrogen atom transfer. Chem Commun (Camb) 2020; 56:8671-8674. [DOI: 10.1039/d0cc03619f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Visible light initiated α-C(sp3)–H hetroarylation of N-(benzyloxy)phthalimides with cyanopyridines via 1,2-hydrogen atom transfer is depicted.
Collapse
Affiliation(s)
- Long-Jin Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
| | - Hong-Yu Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
| | - De-Lie An
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
15
|
Lehnherr D, Lam YH, Nicastri MC, Liu J, Newman JA, Regalado EL, DiRocco DA, Rovis T. Electrochemical Synthesis of Hindered Primary and Secondary Amines via Proton-Coupled Electron Transfer. J Am Chem Soc 2019; 142:468-478. [PMID: 31849221 DOI: 10.1021/jacs.9b10870] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Accessing hindered amines, particularly primary amines α to a fully substituted carbon center, is synthetically challenging. We report an electrochemical method to access such hindered amines starting from benchtop-stable iminium salts and cyanoheteroarenes. A wide variety of substituted heterocycles (pyridine, pyrimidine, pyrazine, purine, azaindole) can be utilized in the cross-coupling reaction, including those substituted with a halide, trifluoromethyl, ester, amide, or ether group, a heterocycle, or an unprotected alcohol or alkyne. Mechanistic insight based on DFT data, as well as cyclic voltammetry and NMR spectroscopy, suggests that a proton-coupled electron-transfer mechanism is operational as part of a hetero-biradical cross-coupling of α-amino radicals and radicals derived from cyanoheteroarenes.
Collapse
Affiliation(s)
- Dan Lehnherr
- Process Research and Development , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Yu-Hong Lam
- Computational and Structural Chemistry , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Michael C Nicastri
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Jinchu Liu
- Process Research and Development , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Justin A Newman
- Process Research and Development , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Erik L Regalado
- Process Research and Development , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Daniel A DiRocco
- Process Research and Development , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Tomislav Rovis
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
16
|
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
17
|
Leifert D, Studer A. The Persistent Radical Effect in Organic Synthesis. Angew Chem Int Ed Engl 2019; 59:74-108. [PMID: 31116479 DOI: 10.1002/anie.201903726] [Citation(s) in RCA: 445] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Radical-radical couplings are mostly nearly diffusion-controlled processes. Therefore, the selective cross-coupling of two different radicals is challenging and not a synthetically valuable transformation. However, if the radicals have different lifetimes and if they are generated at equal rates, cross-coupling will become the dominant process. This high cross-selectivity is based on a kinetic phenomenon called the persistent radical effect (PRE). In this Review, an explanation of the PRE supported by simulations of simple model systems is provided. Radical stabilities are discussed within the context of their lifetimes, and various examples of PRE-mediated radical-radical couplings in synthesis are summarized. It is shown that the PRE is not restricted to the coupling of a persistent with a transient radical. If one coupling partner is longer-lived than the other transient radical, the PRE operates and high cross-selectivity is achieved. This important point expands the scope of PRE-mediated radical chemistry. The Review is divided into two parts, namely 1) the coupling of persistent or longer-lived organic radicals and 2) "radical-metal crossover reactions"; here, metal-centered radical species and more generally longer-lived transition-metal complexes that are able to react with radicals are discussed-a field that has flourished recently.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
18
|
Gao L, Wang G, Cao J, Chen H, Gu Y, Liu X, Cheng X, Ma J, Li S. Lewis Acid-Catalyzed Selective Reductive Decarboxylative Pyridylation of N-Hydroxyphthalimide Esters: Synthesis of Congested Pyridine-Substituted Quaternary Carbons. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03798] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jia Cao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Hui Chen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Yuming Gu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Xueting Liu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Xu Cheng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
- Institute of Chemistry and Biomedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
19
|
Malcolmson SJ, Li K, Shao X. 2-Azadienes as Enamine Umpolung Synthons for the Preparation of Chiral Amines. Synlett 2019; 30:1253-1268. [PMID: 33731976 PMCID: PMC7963344 DOI: 10.1055/s-0037-1611770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The development of new strategies for the preparation of chiral amines is an important objective in organic synthesis. In this Synpacts, we summarize our approach for catalytically accessing nucleophilic aminoalkyl metal species from 2-azadienes, and its application in generating a number of important but elusive chiral amine scaffolds. Reductive couplings with ketones and imines afford 1,2-amino tertiary alcohols and 1,2-diamines, respectively, whereas fluoroarylations of gem-difluoro-2-azadienes deliver α-trifluoromethylated benzylic amines.
Collapse
Affiliation(s)
| | - Kangnan Li
- Department of Chemistry, Duke University, NC 27708, USA
| | - Xinxin Shao
- Department of Chemistry, Duke University, NC 27708, USA
| |
Collapse
|