1
|
Zheng Y, Hu H, Qian L, Zhu Y, Zhang T, Yang D, Qiu F. Phase-Induced Strain Effect to Synthesize an Iron-Doped Orthogonal Cobalt Selenide Electrocatalyst for the Oxygen Evolution Reaction. Inorg Chem 2024. [PMID: 39230933 DOI: 10.1021/acs.inorgchem.4c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The etching effect has the capability to control atom doping and trigger phase transformation, thereby enhancing the electrocatalytic reaction. Herein, iron-doped cobalt selenide (Fe-CoSe2) nanoparticle-decorated carbon nanofibers (Fe-CoSe2/CNFs) are synthesized by assembling an FeCo-Prussian blue analogue (FeCo-PBA) cube precursor with polyacrylonitrile fibers and then treating with hydrochloric acid, followed by gas phase selenization. The Fe-CoSe2/CNFs catalyst exhibits a large surface area and a porous structure, facilitating the permeation of electrolytes. Moreover, orthorhombic CoSe2 is obtained, which is in favor of improving the oxygen evolution reaction (OER). By modulating the etching time, the ideal crystal phase and the optimal amount of the dopant (Fe) can be achieved, thus showing favorable OER activity. Specifically, the Fe-CoSe2/CNFs electrocatalyst enables high electrocatalytic activity for the OER with a low overpotential of 263 mV to drive a current density of 10 mA cm-2 in 1 M KOH. A small Tafel slope of 51 mV dec-1 shows fast charge transfer kinetics. Density functional theory (DFT) calculations reveal that Fe-doped orthorhombic CoSe2(111) can modulate the electron structure, contributing to OH- adsorption ability. Given this, a strategy for phase transformation induced by etching technology is proposed to improve the intrinsic activity of the catalyst.
Collapse
Affiliation(s)
- Yunhua Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huiting Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Long Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yao Zhu
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Wang W, Qiu S, Gao T, He H, Zhao X, Liu ZH. Fabricating a high-performance anode by coating a carbon layer on a yolk-shell bimetallic selenide microsphere for enhanced lithium storage. Dalton Trans 2024; 53:12594-12603. [PMID: 39007337 DOI: 10.1039/d4dt01462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The rational synthesis of an electrode material with a highly active and stable architecture is very critical to achieving high-performance electrochemical energy storage. Herein, N-doped carbon restricting yolk-shell CoSe2/Ni3Se4 (CoSe2/Ni3Se4@NC) flower-like microspheres were successfully synthesized from solid CoNi-glycerate microspheres using a coating technology as an anode material for lithium-ion batteries (LIBs). The unique yolk-shell CoSe2/Ni3Se4@NC microspheres with hierarchical pores can increase the contact area with the electrolyte and provide enough transfer channels for the diffusion of Li+. The carbon layer on the surface of CoSe2/Ni3Se4@NC can not only improve the conductivity of the electrode but also provide the protective effect of active nanosheets during the process of synthesis, avoiding the overall structure collapse during the charge/discharge process of LIBs. Benefiting from the high conductivity, hollow structure, and elastic NC shell bestowed by the unique architecture, the yolk-shell CoSe2/Ni3Se4@NC anode shows excellent lithium storage performances, such as an excellent reversible specific capacity of 319 mA h g-1 at a current density of 1000 mA g-1 after 500 cycles and excellent cycling stability. This synthesis strategy provides a new way to optimize the lithium storage performance of transition metal compound electrode materials, which is helpful to the design of the next generation of high-performance LIBs.
Collapse
Affiliation(s)
- Wenzhe Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Shuting Qiu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Tianqi Gao
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Hua He
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Xiaojun Zhao
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China.
| | - Zhi-Hong Liu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| |
Collapse
|
3
|
Gao L, Wang J, Niu H, Jin J, Ma J. Interfacial Se-O Bonds Modulating Spatial Charge Distribution in FeSe 2/Nb:Fe 2O 3 with Rapid Hole Extraction for Efficient Photoelectrochemical Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38032026 DOI: 10.1021/acsami.3c12007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Surface engineering is an effective strategy to improve the photoelectrochemical (PEC) catalytic activity of hematite, and the defect states with abundant coordinative unsaturation atoms can serve as anchoring sites for constructing intimate connections between semiconductors. On this basis, we anchored an ultrathin FeSe2 layer on Nb5+-doped Fe2O3 (FeSe2/Nb:Fe2O3) via interfacial Se-O chemical bonds to tune the surface potential. Density functional theory (DFT) calculations indicate that amorphous FeSe2 decoration could generate electron delocalization over the composite photoanodes so that the electron mobility was improved to a large extent. Furthermore, electrons could be transferred via the newly formed Se-O bonds at the interface and holes were collected at the surface of electrode for PEC water oxidation. The desired charge redistribution is in favor of suppressing charge recombination and extracting effective holes. Later, work function calculations and Mott-Schottky (M-S) plots demonstrate that a type-II heterojunction was formed in FeSe2/Nb:Fe2O3, which further expedited carrier separation. Except for spatial carrier modulation, the amorphous FeSe2 layer also provided abundant active sites for intermediates adsorption according to the d band center results. In consequence, the target photoanodes attained an improved photocurrent density of 2.42 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (RHE), 2.5 times as that of the bare Fe2O3. This study proposed a defect-anchoring method to grow a close-connected layer via interfacial chemical bonds and revealed the spatial charge distribution effects of FeSe2 on Nb:Fe2O3, giving insights into rational designation in composite photoanodes.
Collapse
Affiliation(s)
- Lili Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiaoli Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Huilin Niu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jun Jin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, Gansu, P. R. China
| |
Collapse
|
4
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Wenelska K, Dymerska A, Mijowska E. Oxygen evolution reaction on MoS 2/C rods-robust and highly active electrocatalyst. NANOTECHNOLOGY 2023; 34:465403. [PMID: 37567163 DOI: 10.1088/1361-6528/acef2f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/11/2023] [Indexed: 08/13/2023]
Abstract
Recently, water oxidation or oxygen evolution reaction (OER) in electrocatalysis has attracted huge attention due to its prime role in water splitting, rechargeable metal-air batteries, and fuel cells. Here, we demonstrate a facile and scalable fabrication method of a rod-like structure composed of molybdenum disulfide and carbon (MoS2/C) from parent 2D MoS2. This novel composite, induced via the chemical vapor deposition (CVD) process, exhibits superior oxygen evolution performance (overpotential = 132 mV at 10 mA cm-2and Tafel slope = 55.6 mV dec-1) in an alkaline medium. Additionally, stability tests of the obtained structures at 10 mA cm-2during 10 h followed by 20 mA cm-2during 5 h and 50 mA cm-2during 2.5 h have been performed and clearly prove that MoS2/C can be successfully used as robust noble-metal-free electrocatalysts. The promoted activity of the rods is ascribed to the abundance of active surface (ECSA) of the catalyst induced due to the curvature effect during the reshaping of the composite from 2D precursor (MoS2) in the CVD process. Moreover, the presence of Fe species contributes to the observed excellent OER performance. FeOOH, Fe2O3, and Fe3O4are known to possess favorable electrocatalytic properties, including high catalytic activity and stability, which facilitate the electrocatalytic reaction. Additionally, Fe-based species like Fe7C3and FeMo2S5offer synergistic effects with MoS2, leading to improved catalytic activity and durability due to their unique electronic structure and surface properties. Additionally, turnover frequency (TOF) (58 1/s at the current density of 10 mA cm-2), as a direct indicator of intrinsic activity, indicates the efficiency of this catalyst in OER. Based onex situanalyzes (XPS, XRD, Raman) of the electrocatalyst the possible reaction mechanism is explored and discussed in great detail showing that MoS2, carbon, and iron oxide are the main active species of the reaction.
Collapse
Affiliation(s)
- Karolina Wenelska
- West Pomeranian University of Technology, Szczecin Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry, Piastow Ave. 42, 71-065 Szczecin, Poland
| | - Anna Dymerska
- West Pomeranian University of Technology, Szczecin Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry, Piastow Ave. 42, 71-065 Szczecin, Poland
| | - Ewa Mijowska
- West Pomeranian University of Technology, Szczecin Faculty of Chemical Technology and Engineering, Department of Nanomaterials Physicochemistry, Piastow Ave. 42, 71-065 Szczecin, Poland
| |
Collapse
|
6
|
Guo Y, Jia K, Dai F, Liu Y, Zhang C, Su J, Wang K. Hierarchical Porous Tri-metallic NiCoFe-Se/CFP Derived from Ni-Co-Fe Prussian Blue Analogues as Efficient Electrocatalyst for Oxygen Evolution Reaction. J Colloid Interface Sci 2023; 642:638-647. [PMID: 37030200 DOI: 10.1016/j.jcis.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
The progress of inexpensive, high-efficiency, and steady oxygen evolution reaction (OER) electrocatalysts is of great importance to promoting water splitting for green hydrogen production. Herein, tri-metallic NiCoFe selenide catalyst backed up by carbon fiber paper (CFP) was synthesized by a facile selenization of NiCoFe Prussian blue analogues (PBAs) for OER in alkaline solutions. The NiCoFe-Se/CFP inherited the porous nanostructure of the metal-organic frameworks (MOFs) precursors prepared by rapid cyclic voltammetry electrodeposition. Benefiting from the 3D hierarchical porous structure, optimized electronic structure of NiCoFe selenides and high conductivity, the synthesized electrocatalyst exhibits outstanding catalytic activity to the corresponding mono-metallic or bi-metallic selenides. Specifically, the NiCoFe-Se/CFP electrode demands an overpotential of 221 mV to attain the 10 mA cm-2 current density in 1.0 M KOH solution and a low Tafel slope of 38.6 mV dec-1. The prepared catalyst also displays good stability and durability. These findings prove a feasible strategy to further improve the catalytic activities of non-precious metal based OER electrocatalysts by the cooperation of structure design and chemical component modification.
Collapse
|
7
|
Composition and Morphology Modulation of Bimetallic Nitride Nanostructures on Nickel Foams for Efficient Oxygen Evolution Electrocatalysis. Catalysts 2023. [DOI: 10.3390/catal13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Metal-nitrides-based electrocatalysts for efficient oxygen-evolution have been extensively studied as one of the most promising candidates to fulfil the demand for future energy-conversion and storage. Herein, a series of NixCo1−xO- and NixCo1−xN-based nanostructures on nickel foams were reported to show excellent activities for oxygen-evolution reaction. The catalysts were prepared and modulated rationally via a facile-hydrothermal method, followed by high-temperature calcination under air or nitrogen atmosphere. The optimal bimetallic-nitride catalyst Ni0.3Co0.7N shows a small overpotential of 268 mV at 20 mA cm−2, and a Tafel slope of 66 mV dec−1 with good stability. The enhanced OER-performance is ascribed to the synergetic effect of the unique morphology and the intrinsic catalytic property of the nanostructure after nitridation.
Collapse
|
8
|
Cheng Z, Gao M, Sun L, Zheng D, Xu H, Kong L, Gao C, Yu H, Lin J. FeSe/FeSe
2
Heterostructure as a Low‐Cost and High‐Performance Electrocatalyst for Oxygen Evolution Reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhaoyang Cheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Mengyou Gao
- College of Automation and Electronic Engineering Qingdao University of Science and Technology Qingdao 266042 P.R. China
| | - Lei Sun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Dehua Zheng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Huizhong Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Linghui Kong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Chang Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| | - Haizhou Yu
- Institute of Advanced Synthesis (IAS) School of Chemistry and Molecular Engineering Nanjing Tech University (Nanjing Tech) Nanjing 211816 China
| | - Jianjian Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science MOE Shandong Key Laboratory of Biochemical Analysis College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao P.R. China
| |
Collapse
|
9
|
Ahmad M, Xi B, Gu Y, Zhang H, Xiong S. NiSe2/FeSe2 heterostructured nanoparticles supported on rGO for efficient water electrolysis. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01473k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hybrid architectures composed of NiSe2/FeSe2 heterostructured nanoparticles supported on rGO were synthesized through a facile self-templating strategy, and exhibited excellent electrocatalytic performance for overall water splitting.
Collapse
Affiliation(s)
- Muhammad Ahmad
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yu Gu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
10
|
Yu H, Xie Y, Deng L, Huang H, Song J, Yu D, Li L, Peng S. In situ construction of FeNi2Se4-FeNi LDH heterointerfaces with electron redistribution for enhanced overall water splitting. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01185e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The abundant heterogeneous interfaces between the FeNi2Se4 and FeNi LDH can provide enriched active sites and accelerate reaction kinetics, which improves the overall water splitting performance.
Collapse
Affiliation(s)
- Hanzhi Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yaoyi Xie
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Liming Deng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hongjiao Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Junnan Song
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Deshuang Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
11
|
Huang Y, Wang JJ, Zou Y, Jiang LW, Liu XL, Jiang WJ, Liu H, Hu JS. Selective Se doping of NiFe2O4 on an active NiOOH scaffold for efficient and robust water oxidation. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63739-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Wang B, Srinivas K, Wang X, Su Z, Yu B, Zhang X, Liu Y, Ma F, Yang D, Chen Y. Self-assembled CoSe 2-FeSe 2 heteronanoparticles along the carbon nanotube network for boosted oxygen evolution reaction. NANOSCALE 2021; 13:9651-9658. [PMID: 34013941 DOI: 10.1039/d1nr01092a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water electrolysis is a significant alternative technique to produce clean hydrogen fuel in order to replace environmentally destructive fossil fuel combustion. However, the sluggish oxygen evolution kinetics makes this process vulnerable as it requires relatively high overpotentials. Hence, significantly effective electrocatalysts are necessary to access the water-oxidation process at a low overpotential to make this process industrially viable. Therefore, in order to reduce the energy barrier, we developed bimetallic CoSe2-FeSe2 heteronanoparticles along the carbon nanotube network (CoSe2-FeSe2/CNT) via a facile selenization strategy. Due to the unique assembly of highly conductive nanoparticles along the CNT network, the CoSe2-FeSe2/CNT displays an exceptionally good oxygen evolution (OER) activity; it requires 248 mV overpotential to reach a current density of 10 mA cm-2 (η10) with an ultra-low Tafel slope of 36 mV dec-1 and displays an overpotential of 1.59 V (η10) in the full water-splitting catalysis with the commercial Pt/C cathode. The high OER activity of CoSe2-FeSe2/CNT over the monometallic CoSe2/CNT and FeSe2/CNT electrocatalysts approve the synergistic interactions. Therefore, the superior performance is possibly ascribed to the unique porous nanoarchitecture and the strong coupling interactions between CoSe2 and FeSe2 heteronanoparticles on the conductive network. This study introduces an innovative approach to rationally design and fabricate cost-effective and highly proficient electrocatalysts for boosted OER performance.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang B, Wu T, Chen G, Liu X, Li W, He Q, Li DS, Guan BY, Liu Y. General Synthesis of Hierarchically Macro/Mesoporous Fe,Ni-Doped CoSe/N-Doped Carbon Nanoshells for Enhanced Electrocatalytic Oxygen Evolution. Inorg Chem 2021; 60:6782-6789. [DOI: 10.1021/acs.inorgchem.1c00620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Binhang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tianyu Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guangrui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinyao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wen Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qingxia He
- Key Laboratory of High Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Dong-Sheng Li
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| | - Bu Yuan Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
14
|
Sheng B, Wang L, Huang H, Yang H, Xu R, Wu X, Yu Y. Boosting Potassium Storage by Integration Advantageous of Defect Engineering and Spatial Confinement: A Case Study of Sb 2 Se 3. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005272. [PMID: 33205608 DOI: 10.1002/smll.202005272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Indexed: 05/17/2023]
Abstract
The potassium ion batteries (KIBs) based on conversion/alloying reaction mechanisms show high theoretical capacity. However, their applications are hampered by the poor cyclability resulting from the inherent large volume variations and the sluggish kinetics during K+ repeated insertion/extraction process. Herein, taken Sb2 Se3 as a model material, by rational design, nickel doped-carbon coated Sb2 Se3 nanorods (denoted as (Sb0.99 Ni0.01 )2 Se3 @C) are prepared through combined strategies of the conductive encapsulation and crystal structure modification. The carbon coating acts as an efficient buffer layer that maintains superior structural stability upon cycling. The introduction of Ni atoms can enhance electrical conductivity, leading to outstanding rate performance, which are confirmed by density functional theory calculation. The (Sb0.99 Ni0.01 )2 Se3 @C displays excellent reversible capacity (410 mAh g-1 at 0.1 A g-1 after 100 cycles) and unprecedented rate capability (140 mAh g-1 at 10 A g-1 ). Furthermore, KFeHCF//(Sb0.99 Ni0.01 )2 Se3 @C full cell exhibits a high specific capacity (408 mAh g-1 at 0.1 A g-1 ), superior rate capability (260 mAh g-1 at 2 A g-1 ). This work can open up a new avenue for the design of stable conversion/alloying-based anodes for high energy density KIBs.
Collapse
Affiliation(s)
- Binbin Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lifeng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huijuan Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hai Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Rui Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Dalian National Laboratory for Clean Energy (DNL), Chinese Academy of Sciences (CAS), Dalian, Liaoning Province, 116023, China
| |
Collapse
|
15
|
Zhu L, Liao Y, Jia Y, Zhang X, Ma R, Wang K. Solid-solution hexagonal Ni 0.5Co 0.5Se nanoflakes toward boosted oxygen evolution reaction. Chem Commun (Camb) 2020; 56:13113-13116. [PMID: 32996971 DOI: 10.1039/d0cc05247g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxygen evolution reaction (OER) with sluggish kinetics is a bottleneck for the large-scale application of water electrolysis. Herein, solid-solution hexagonal Ni0.5Co0.5Se nanoflakes are designed and successfully synthesized via a facile hydrothermal method with a much lower overpotential of 216 mV at 10 mA cm-2 and a Tafel slope of 37.08 mV dec-1.
Collapse
Affiliation(s)
- Lei Zhu
- Institute of Materials for Energy and Environment, Laboratory of New Fiber Materials and Modern Textile, Growing Basis for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | |
Collapse
|
16
|
Dissolution-regrowth of hierarchical Fe-Dy oxide modulates the electronic structure of nickel-organic frameworks as highly active and stable water splitting electrocatalysts. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63606-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Hierarchical iron selenide nanoarchitecture as an advanced anode material for high-performance energy storage devices. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136833] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Ultrathin 2D FexCo1-xSe2 nanosheets with enhanced sodium-ion storage performance induced by heteroatom doping effect. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Zhang Y, Xu J, Lv L, Wang A, Zhang B, Ding Y, Wang C. Electronic engineering of CoSe/FeSe 2 hollow nanospheres for efficient water oxidation. NANOSCALE 2020; 12:10196-10204. [PMID: 32355941 DOI: 10.1039/d0nr01809k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
First-row non-precious metal-based catalysts are widely studied and recognized as potential substitutes for precious metal-based catalysts in the oxygen evolution reaction (OER) for hydrogen generation but their application remains challenging. In this study, a unique class of Co-Fe selenide hollow nanospheres (CoSe@FeSe2) is well-designed through a facile hydrothermal method. The in situ formed hybrid composites possess numerous interfaces allowing partial electron transfer via O2- bridges to optimize the adsorption feature of the reaction intermediates, *OH, *O, and *OOH, on the catalysts. The collected surface valence band spectra evidence the optimization of the intermediate adsorption and active sites. The as-synthesized CoSe@FeSe2 exhibits excellent OER activity with a low overpotential of 281 mV to drive a current density of 10 mA cm-2 and a low Tafel slope of 34.3 mV dec-1 in an alkaline electrolyte. Additionally, the advanced catalyst also shows super stability with negligible current density decay after 12 h. This work presents a prototype for the fabrication of highly efficient electrocatalysts using an electronic engineering strategy.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemical Engineering and Pharmacy, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430073, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Tuo Y, Wang X, Chen C, Feng X, Liu Z, Zhou Y, Zhang J. Identifying the role of Ni and Fe in Ni–Fe co-doped orthorhombic CoSe2 for driving enhanced electrocatalytic activity for oxygen evolution reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135682] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Zhou LL, Pan DS, Guo ZH, Song JL. Two-dimensional bimetallic CoFe selenite via metal-ion assisted self-assembly for enhanced oxygen evolution reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj04832a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A 2D CoFe selenite crystals was used as an efficient OER catalyst, which was obtained in a high yield via a simple metal-ion self-assembly strategy under hydrothermal condition.
Collapse
Affiliation(s)
- Ling-Li Zhou
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Dong-Sheng Pan
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Zheng-Han Guo
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| | - Jun-Ling Song
- International Joint Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
22
|
Bhatti AL, Aftab U, Tahira A, Abro MI, Kashif samoon M, Aghem MH, Bhatti MA, HussainIbupoto Z. Facile doping of nickel into Co3O4 nanostructures to make them efficient for catalyzing the oxygen evolution reaction. RSC Adv 2020; 10:12962-12969. [PMID: 35492082 PMCID: PMC9051423 DOI: 10.1039/d0ra00441c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/16/2020] [Indexed: 11/25/2022] Open
Abstract
Designing a facile and low-cost methodology to fabricate earth-abundant catalysts is very much needed for a wide range of applications. Herein, a simple and straightforward approach was developed to tune the electronic properties of cobalt oxide nanostructures by doping them with nickel and then using them to catalyze the oxygen evolution reaction (OER) in an aqueous solution of 1.0 M KOH. The addition of a nickel impurity improved the conductivity of the cobalt oxide, and further increased its activity towards the OER. Analytical techniques such as scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and powder X-ray diffraction (XRD) were used to investigate, respectively, the morphology, composition and crystalline structure of the materials used. The nickel-doped cobalt oxide material showed randomly oriented nanowires and a high density of nanoparticles, exhibited the cubic phase, and contained cobalt, nickel and oxygen as its main elements. The nickel-doped cobalt oxide also yielded a Tafel slope of 82 mV dec−1 and required an overpotential of 300 mV to reach a current density of 10 mA cm−2. As an OER catalyst, it was shown to be durable for 40 h. Electrochemical impedance spectroscopy (EIS) analysis showed a low charge-transfer resistance of 177.5 ohms for the nickel-doped cobalt oxide, which provided a further example of its excellent OER performance. These results taken together indicated that nickel doping of cobalt oxide can be accomplished via a facile approach and that the product of this doping can be used for energy and environmental applications. Designing a facile and low-cost methodology to fabricate earth-abundant catalysts is very much needed for a wide range of applications.![]()
Collapse
Affiliation(s)
| | - Umair Aftab
- Mehran University of Engineering and Technology
- 7680 Jamshoro
- Pakistan
| | - Aneela Tahira
- Department of Science and Technology
- Campus Norrköping
- Linköping University
- SE-60174 Norrköping
- Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Synthesis and identifying the active site of Cu2Se@CoSe nano-composite for enhanced electrocatalytic oxygen evolution. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Wang Y, Huang L, Ai L, Wang M, Fan Z, Jiang J, Sun H, Wang S. Ultrathin nickel-cobalt inorganic-organic hydroxide hybrid nanobelts as highly efficient electrocatalysts for oxygen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Xu C, Li Q, Shen J, Yuan Z, Ning J, Zhong Y, Zhang Z, Hu Y. A facile sequential ion exchange strategy to synthesize CoSe 2/FeSe 2 double-shelled hollow nanocuboids for the highly active and stable oxygen evolution reaction. NANOSCALE 2019; 11:10738-10745. [PMID: 31120471 DOI: 10.1039/c9nr02599e] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transition metal-based nanostructures have been considered as promising substitutes for rare-earth metal oxide electrocatalysts toward the oxygen evolution reaction (OER). Herein, we report for the first time on a novel multicomponent metal selenide electrocatalyst based on CoSe2/FeSe2 double-shelled hollow nanocuboids (CoSe2/FeSe2 DS-HNCs) with the highly oxidative Co3+ species, which is synthesized via a facile sequential ion exchange strategy. The solid Co-precursor nanocuboids are first converted into the intermediate Co2[Fe(CN)6] with a mesoporous and double-shelled hollow structure produced through a facile ligand exchange at room temperature, and then the final CoSe2/FeSe2 DS-HNCs are obtained by a subsequent Se ion exchange reaction. The intermediate product of Co2[Fe(CN)6] plays an important role not only in constructing a double-shelled hollow structure but also in providing the Fe source for the growth of the final multicomponent metal selenides. Benefiting from the nanosized double-shelled hollow structure and mesoporous double-metal selenide shells with the highly oxidative Co3+ species, the as-prepared CoSe2/FeSe2 DS-HNCs exhibit superior OER performance to state-of-the-art metal selenides, including a small overpotential of 240 mV at a current density of 10 mA cm-2 and the excellent electrochemical durability over 50 h. This work opens up a new avenue towards developing highly active multicomponent noble-metal-free electrocatalysts.
Collapse
Affiliation(s)
- Chunyang Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Xiang R, Peng L, Wei Z. Tuning Interfacial Structures for Better Catalysis of Water Electrolysis. Chemistry 2019; 25:9799-9815. [DOI: 10.1002/chem.201901168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Rui Xiang
- Chongqing Key Laboratory of Chemical Process for Clean Energy, and Resource Utilization, School of Chemistry and Chemical EngineeringChongqing University No.55 Daxuecheng South Rd., Shapingba Chongqing 401331 P.R. China
| | - Lishan Peng
- Chongqing Key Laboratory of Chemical Process for Clean Energy, and Resource Utilization, School of Chemistry and Chemical EngineeringChongqing University No.55 Daxuecheng South Rd., Shapingba Chongqing 401331 P.R. China
| | - Zidong Wei
- Chongqing Key Laboratory of Chemical Process for Clean Energy, and Resource Utilization, School of Chemistry and Chemical EngineeringChongqing University No.55 Daxuecheng South Rd., Shapingba Chongqing 401331 P.R. China
| |
Collapse
|
27
|
Liu S, Jiang Y, Yang M, Zhang M, Guo Q, Shen W, He R, Li M. Highly conductive and metallic cobalt-nickel selenide nanorods supported on Ni foam as an efficient electrocatalyst for alkaline water splitting. NANOSCALE 2019; 11:7959-7966. [PMID: 30968074 DOI: 10.1039/c8nr10545f] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Water splitting has long been considered as a promising chemical reaction that can produce clean hydrogen fuel to relieve the energy crisis and environmental pollution. Herein, we report that Co0.75Ni0.25Se/NF formed by two-step growth of metallic cobalt-nickel selenide nanorods on porous nickel foam was used as a bifunctional electrocatalyst. Ni foam serves as a slow-releasing nickel source together with a Co source to form a special proportional cobalt-nickel selenide. Due to its unique rough nanostructure, bimetallic cooperative effects and intrinsic metallic character, the obtained Co0.75Ni0.25Se/NF electrode exhibits a low overpotential of 269 mV (50 mA cm-2) for the oxygen evolution reaction and an overpotential of 106 mV (10 mA cm-2) for the hydrogen evolution reaction. Furthermore, this bifunctional electrocatalyst requires a cell voltage of 1.60 V to achieve a current density of 10 mA cm-2. Besides, based on theoretical calculation, it is further shown that the synergy between Co and Ni elements is beneficial for improving the internal structure of the catalyst, resulting in a high electrical conductivity, and low HER Gibbs free-energy and water adsorption energy. The present results indicate that Co0.75Ni0.25Se/NF exhibits advanced electrocatalytic activity for overall water splitting. This work offers an appropriate methodology and theoretical guidance to synthesize a bimetal-selenide electrocatalyst for water splitting.
Collapse
Affiliation(s)
- Shu Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wan J, Ye W, Gao R, Fang X, Guo Z, Lu Y, Yan D. Synthesis from a layered double hydroxide precursor for a highly efficient oxygen evolution reaction. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00190e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A hybrid of Co3Se4 and FeSe2 prepared via a facile hydrothermal method achieves an efficient OER activity during water splitting.
Collapse
Affiliation(s)
- Jian Wan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Wen Ye
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Rui Gao
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- P. R. China
| | - Zhenguo Guo
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yanluo Lu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Dongpeng Yan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
- Beijing Key Laboratory of Energy Conversion and Storage Materials
| |
Collapse
|