1
|
Cai L, Gao T, Wee ATS. Topology selectivity of a conformationally flexible precursor through selenium doping. Nat Commun 2024; 15:3235. [PMID: 38622157 PMCID: PMC11018763 DOI: 10.1038/s41467-024-47614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Conformational arrangements within nanostructures play a crucial role in shaping the overall configuration and determining the properties, for example in covalent/metal organic frameworks. In on-surface synthesis, conformational diversity often leads to uncontrollable or disordered structures. Therefore, the exploration of controlling and directing the conformational arrangements is significant in achieving desired nanoarchitectures. Herein, a conformationally flexible precursor 2,4,6-tris(3-bromophenyl)-1,3,5-triazine is employed, and a random phase consisting of C3h and Cs conformers is firstly obtained after deposition of the precursor on Cu(111) at room temperature to 365 K. At low coverage (0.01 ML) selenium doping, we achieve the selectivity of the C3h conformer and improve the nanopore structural homogeneity. The ordered two-dimensional metal organic nanostructure can be fulfilled by selenium doping from room temperature to 365 K. The formation of the conformationally flexible precursor on Cu(111) is explored through the combination of high-resolution scanning tunneling microscopy and non-contact atomic force microscopy. The regulation of energy diagrams in the absence or presence of the Se atom is revealed by density functional theory calculations. These results can enrich the on-surface synthesis toolbox of conformationally flexible precursors, for the design of complex nanoarchitectures, and for future development of engineered nanomaterials.
Collapse
Affiliation(s)
- Liangliang Cai
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Tianhao Gao
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore.
| |
Collapse
|
2
|
Wang L, Zhu R, Shen Z, Song Y, She L, Wang X, Jia Y, Zhang Z, Zhang W. On-Surface Synthesis of Self-Assembled Covalently Linked Wavy Chains with Site-Selective Conformational Switching. J Am Chem Soc 2023; 145:1660-1667. [PMID: 36633835 DOI: 10.1021/jacs.2c09857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Conformational arrangements in polymers on surfaces determine the overall shape as well as the potential properties. It is generally believed that conformational diversity leads to uncontrollable or disordered structures in on-surface synthesis. However, in this study, we obtain two well-ordered self-assembled covalently linked wavy chains with site-selective conformational switching via the Ullmann reaction of 1,2-bis(3-bromophenyl)ethane with multiple conformations on Ag(111). Two kinds of wavy chains exhibit distinct conformational arrangements, where chain I contains one repeating unit conformation of -cis-trans1-cis-trans1-cis-cis-trans1-, while the adjacent parallel parts in wavy chain II have two different conformational arrangements of -cis-cis-trans1- and -cis-cis-trans2-. Wavy chains coassemble with dissociated bromine atoms, suggesting that the Br···H-C interactions between Br atoms and molecular chains are crucial for the construction of ordered wavy chains. High-resolution scanning tunneling microscopy is employed to reveal the surface reaction process at the molecular scale. In depth growth mechanism analysis combined with density functional theory calculations unveils that the substrate also plays an important role in the fabrication of well-ordered wavy chains. The present work extends the surface reaction of conformational flexible precursors.
Collapse
Affiliation(s)
- Limei Wang
- Key Laboratory for Quantum Matter Science, Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Rui Zhu
- School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Zhitao Shen
- Key Laboratory for Quantum Matter Science, Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Yeheng Song
- Key Laboratory for Quantum Matter Science, Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Limin She
- Key Laboratory for Quantum Matter Science, Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Xuesen Wang
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Yu Jia
- School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei 230026, China
| | - Weifeng Zhang
- Key Laboratory for Quantum Matter Science, Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Duncan DA, Blowey PJ, Lee TL, Allegretti F, Nielsen CB, Rochford LA. Quantitative Insights into the Adsorption Structure of Diindeno[1,2- a;1',2'- c]fluorene-5,10,15-trione (Truxenone) on a Cu(111) Surface Using X-ray Standing Waves. ACS OMEGA 2021; 6:34525-34531. [PMID: 34963937 PMCID: PMC8697368 DOI: 10.1021/acsomega.1c04799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The adsorption structure of truxenone on Cu(111) was determined quantitatively using normal-incidence X-ray standing waves. The truxenone molecule was found to chemisorb on the surface, with all adsorption heights of the dominant species on the surface less than ∼2.5 Å. The phenyl backbone of the molecule adsorbs mostly parallel to the underlying surface, with an adsorption height of 2.32 ± 0.08 Å. The C atoms bound to the carbonyl groups are located closer to the surface at 2.15 ± 0.10 Å, a similar adsorption height to that of the chemisorbed O species; however, these O species were found to adsorb at two different adsorption heights, 1.96 ± 0.08 and 2.15 ± 0.06 Å, at a ratio of 1:2, suggesting that on average, one O atom per adsorbed truxenone molecule interacts more strongly with the surface. The adsorption geometry determined herein is an important benchmark for future theoretical calculations concerning both the interaction with solid surfaces and the electronic properties of a molecule with electron-accepting properties for applications in organic electronic devices.
Collapse
Affiliation(s)
- David A. Duncan
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
| | - Philip J. Blowey
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
- Physics
Department, University of Warwick, Coventry CV4 7AL, U.K.
| | - Tien-Lin Lee
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
| | - Francesco Allegretti
- Physics
Department E20, Technical University of
Munich, James Franck
Straße 1, D-85748 Garching, Germany
| | - Christian B. Nielsen
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Luke A. Rochford
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot OX11 0DE, U.K.
- Chemistry
Department, University of Warwick, Coventry CV4 7AL, U.K.
- Chemistry
Department, University of Birmingham, University Road, Birmingham B15 2TT, U.K.
| |
Collapse
|
4
|
Han Y, Wang J, Song L, Zheng Y, Li Y, Lin H, Li Q, Chi L. A Fundamental Role of the Molecular Length in Forming Metal-Organic Hybrids of Phenol Derivatives on Silver Surfaces. J Phys Chem Lett 2021; 12:1869-1875. [PMID: 33586446 DOI: 10.1021/acs.jpclett.1c00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In on-surface chemistry, the efficient preparation of metal-organic hybrids is regarded as a primary path to mediate controlled synthesis of well-ordered low-dimensional organic nanostructures. The fundamental mechanisms in forming these hybrid structures, however, are so far insufficiently explored. Here, with scanning tunneling microscopy, we studied the bonding behavior of the adsorbed phenol derivatives with different molecular lengths. We reveal that shorter molecules favor bonding with extracted metal adatoms and result in metal-organic hybrids, whereas longer molecules prefer to bond with lattice metal atoms. The conclusions are further confirmed by density functional theory calculations.
Collapse
Affiliation(s)
- Yangyang Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Junbo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Luying Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Yuanjing Zheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Haiping Lin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Qing Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
5
|
Liu Z, Jiang Y, Jiang J, Zhai D, Wang D, Liu M. Self-assembly of isomeric naphthalene appended glucono derivatives: nanofibers and nanotwists with circularly polarized luminescence emission. SOFT MATTER 2020; 16:4115-4120. [PMID: 32195501 DOI: 10.1039/c9sm02542a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two isomeric naphthalene appended glucono derivatives substituted at the 1 or 2-naphthyl positions (Nap-1 and Nap-2) were designed and their self-assembly behaviors and optical properties were investigated. Nap-1 and Nap-2 were found to self-assemble into nanofibers and nanotwists, respectively. While the molecular chirality of the glucono moiety could not be effectively transferred to the naphthalene moiety in the Nap-1 system, this was achieved in the Nap-2 assembly. Thus, the Nap-2 assembly showed obvious circular dichroism (CD) and circularly polarized luminescence (CPL) signals. From the XRD patterns and IR spectra of the supramolecular assemblies, it was found that Nap-2 packed in a more orderly fashion than Nap-1, leading to a hierarchical assembly forming nanotwist structures. Moreover, a light-harvesting system based on Nap-2 supramolecular gels and dyes was established, in which an efficient energy transfer was demonstrated from Nap-2 to an acceptor Eosin Y. It was further found that both chirality and energy transfer enhanced the dissymmetry factor of Eosin Y CPL emission.
Collapse
Affiliation(s)
- Zongwen Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | | | | | | | | | | |
Collapse
|
6
|
Zhang R, Liu J, Gao Y, Hua M, Xia B, Knecht P, Papageorgiou AC, Reichert J, Barth JV, Xu H, Huang L, Lin N. On‐surface Synthesis of a Semiconducting 2D Metal–Organic Framework Cu
3
(C
6
O
6
) Exhibiting Dispersive Electronic Bands. Angew Chem Int Ed Engl 2020; 59:2669-2673. [DOI: 10.1002/anie.201913698] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Ran Zhang
- Department of PhysicsThe Hong Kong University of Science and Technology Hong Kong SAR China
| | - Jing Liu
- Department of PhysicsThe Hong Kong University of Science and Technology Hong Kong SAR China
| | - Yifan Gao
- Department of PhysicsThe Hong Kong University of Science and Technology Hong Kong SAR China
- Department of PhysicsSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Muqing Hua
- Department of PhysicsThe Hong Kong University of Science and Technology Hong Kong SAR China
| | - Bowen Xia
- Department of PhysicsThe Hong Kong University of Science and Technology Hong Kong SAR China
- Department of PhysicsSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Peter Knecht
- Physics Department E20Technical University of Munich 85748 Garching Germany
| | | | - Joachim Reichert
- Physics Department E20Technical University of Munich 85748 Garching Germany
| | - Johannes V. Barth
- Physics Department E20Technical University of Munich 85748 Garching Germany
| | - Hu Xu
- Department of PhysicsSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Li Huang
- Department of PhysicsSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Nian Lin
- Department of PhysicsThe Hong Kong University of Science and Technology Hong Kong SAR China
| |
Collapse
|
7
|
On‐surface Synthesis of a Semiconducting 2D Metal–Organic Framework Cu
3
(C
6
O
6
) Exhibiting Dispersive Electronic Bands. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Jing C, Zhang B, Synkule S, Ebrahimi M, Riss A, Auwärter W, Jiang L, Médard G, Reichert J, Barth JV, Papageorgiou AC. Snapshots of Dynamic Adaptation: Two-Dimensional Molecular Architectonics with Linear Bis-Hydroxamic Acid Modules. Angew Chem Int Ed Engl 2019; 58:18948-18956. [PMID: 31671244 PMCID: PMC6973039 DOI: 10.1002/anie.201912247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Linear modules equipped with two terminal hydroxamic acid groups act as the building block of diverse two-dimensional supramolecular motifs and patterns with room-temperature stability on the close-packed single-crystal surfaces of silver and gold, revealing a complex self-assembly scenario. By combining multiple investigation techniques (scanning tunneling microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and density functional theory calculations), we analyze the characteristics of the ordered assemblies which range from close-packed structures to polyporous networks featuring an exceptionally extended primitive unit cell with a side length exceeding 7 nm. The polyporous network shows potential for hosting and promoting the formation of chiral supramolecules, whereas a transition from 1D chiral randomness to an ordered racemate is discovered in a different porous phase. We correlate the observed structural changes to the adaptivity of the building block and surface-induced changes in the chemical state of the hydroxamic acid functional group.
Collapse
Affiliation(s)
- Chao Jing
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
- Key Laboratory for Advanced MaterialsSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Bodong Zhang
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Sabine Synkule
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Maryam Ebrahimi
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
- Department of ChemistryLakehead University955 Oliver RdThunder BayONP7B 5E1Canada
| | - Alexander Riss
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Willi Auwärter
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Li Jiang
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Guillaume Médard
- Chair of Proteomics and BioanalyticsTechnical University of MunichEmil Erlenmeyer Forum 585354FreisingGermany
| | - Joachim Reichert
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Johannes V. Barth
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | | |
Collapse
|
9
|
Jing C, Zhang B, Synkule S, Ebrahimi M, Riss A, Auwärter W, Jiang L, Médard G, Reichert J, Barth JV, Papageorgiou AC. Snapshots of Dynamic Adaptation: Two‐Dimensional Molecular Architectonics with Linear Bis‐Hydroxamic Acid Modules. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chao Jing
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
- Key Laboratory for Advanced Materials School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Bodong Zhang
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Sabine Synkule
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Maryam Ebrahimi
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
- Department of Chemistry Lakehead University 955 Oliver Rd Thunder Bay ON P7B 5E1 Canada
| | - Alexander Riss
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Willi Auwärter
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Li Jiang
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics Technical University of Munich Emil Erlenmeyer Forum 5 85354 Freising Germany
| | - Joachim Reichert
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Johannes V. Barth
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Anthoula C. Papageorgiou
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| |
Collapse
|