1
|
Liu X, Zhang Q, Zong C, Gai H. Digital Immunoassay for Proteins: Theory, Methodology, and Clinical Applications. Anal Chem 2025; 97:9077-9110. [PMID: 40257815 DOI: 10.1021/acs.analchem.4c05421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Chenghua Zong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| |
Collapse
|
2
|
Stanley CV, Xiao Y, Ling T, Li DS, Chen P. Opto-digital molecular analytics. Chem Soc Rev 2025; 54:3557-3577. [PMID: 40035639 DOI: 10.1039/d5cs00023h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In contrast to conventional ensemble-average-based methods, opto-digital molecular analytic approaches digitize detection by physically partitioning individual detection events into discrete compartments or directly locating and analyzing the signals from single molecules. The sensitivity can be enhanced by signal amplification reactions, signal enhancement interactions, labelling by strong signal emitters, advanced optics, image processing, and machine learning, while specificity can be improved by designing target-selective probes and profiling molecular dynamics. With the capabilities to attain a limit of detection several orders lower than the conventional methods, reveal intrinsic molecular information, and achieve multiplexed analysis using a small-volume sample, the emerging opto-digital molecular analytics may be revolutionarily instrumental to clinical diagnosis, molecular chemistry and science, drug discovery, and environment monitoring. In this article, we provide a comprehensive review of the recent advances, offer insights into the underlying mechanisms, give comparative discussions on different strategies, and discuss the current challenges and future possibilities.
Collapse
Affiliation(s)
- Chelsea Violita Stanley
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
- Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
| | - Yi Xiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
- Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
| | - Tong Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P. R. China
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637457, Singapore.
- Lee Kong Chian School of Medicine, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
- Skin Research Institute of Singapore, 308232, Singapore
| |
Collapse
|
3
|
Zhang Q, Chai W, Pan X, Gai H. Amplification-Free Digital Immunoassay down to the Attomolar Level by Synergistic Sedimentation of Brownian Motion Suppression and Dehydration Transfer. Anal Chem 2024. [PMID: 38329294 DOI: 10.1021/acs.analchem.3c05066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Amplification-free digital immunoassays (DIAs) typically utilize optical nanoparticles to enhance single immunocomplex molecule detection. The efficiency and uniformity of transferring the nanoparticles from a bulk solution to a solid surface determine the limit of detection (LOD) and the accuracy of DIAs. Previous methods suffer from issues like low efficiency, nonuniform distribution, and particle aggregation. Here, we present a novel technique named synergistic sedimentation of Brownian motion suppression and dehydration transfer (SynSed) for nanoparticles using water-soluble polymers. The efficiency of transferring quantum dots (QDs) was increased from 10.7 to 91.4%, and the variation in QD distribution was restricted to 8.8%. By incorporating SynSed into DIAs, we achieved a remarkable reduction in the LOD (down to 3.9 aM) for carcinoembryonic antigen and expanded the dynamic range to cover 3 orders of magnitude in concentration, ranging from 0.01 to 10 fM. DIAs enhanced with SynSed possess ultrahigh sensitivity, advanced accuracy, and specificity, offering a great premise in early disease diagnostics, risk stratification, and treatment response monitoring.
Collapse
Affiliation(s)
- Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Wenwen Chai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaoyan Pan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
4
|
Abstract
This paper reviews methods for detecting proteins based on molecular digitization, i.e., the isolation and detection of single protein molecules or singulated ensembles of protein molecules. The single molecule resolution of these methods has resulted in significant improvements in the sensitivity of immunoassays beyond what was possible using traditional "analog" methods: the sensitivity of some digital immunoassays approach those of methods for measuring nucleic acids, such as the polymerase chain reaction (PCR). The greater sensitivity of digital protein detection has resulted in immuno-diagnostics with high potential societal impact, e.g., the early diagnosis and therapeutic intervention of Alzheimer's Disease. In this review, we will first provide the motivation for developing digital protein detection methods given the limitations in the sensitivity of analog methods. We will describe the paradigm shift catalyzed by single molecule detection, and will describe in detail one digital approach - which we call digital bead assays (DBA) - based on the capture and labeling of proteins on beads, identifying "on" and "off" beads, and quantification using Poisson statistics. DBA based on the single molecule array (Simoa) technology have sensitivities down to attomolar concentrations, equating to ∼10 proteins in a 200 μL sample. We will describe the concept behind DBA, the different single molecule labels used, the ways of analyzing beads (imaging of arrays and flow), the binding reagents and substrates used, and integration of these technologies into fully automated and miniaturized systems. We provide an overview of emerging approaches to digital protein detection, including those based on digital detection of nucleic acids labels, single nanoparticle detection, measurements using nanopores, and methods that exploit the kinetics of single molecule binding. We outline the initial impact of digital protein detection on clinical measurements, highlighting the importance of customized assay development and translational clinical research. We highlight the use of DBA in the measurement of neurological protein biomarkers in blood, and how these higher sensitivity methods are changing the diagnosis and treatment of neurological diseases. We conclude by summarizing the status of digital protein detection and suggest how the lab-on-a-chip community might drive future innovations in this field.
Collapse
Affiliation(s)
- David C Duffy
- Quanterix Corporation, 900 Middlesex Turnpike, Billerica, MA 01821, USA.
| |
Collapse
|
5
|
Zhang JH, Liu M, Zhou F, Yan HL, Zhou YG. Homogeneous Electrochemical Immunoassay Using an Aggregation-Collision Strategy for Alpha-Fetoprotein Detection. Anal Chem 2023; 95:3045-3053. [PMID: 36692355 DOI: 10.1021/acs.analchem.2c05193] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homogeneous immunoassays represent an attractive alternative to traditional heterogeneous assays due to their simplicity and high efficiency. Homogeneous electrochemical assays, however, are not commonly accessed due to the requirement of electrode immobilization of the recognition elements. Herein, we demonstrate a new homogeneous electrochemical immunoassay based on the aggregation-collision strategy for the quantification of tumor protein biomarker alpha-fetoprotein (AFP). The detection principle relies on the aggregation of AgNPs induced by the molecular biorecognition between AFP and AgNPs-anti-AFP probes, which leads to an increased AgNP size and decreased AgNP concentration, allowing an accurate self-validated dual-mode immunoassay by performing nanoimpact electrochemistry (NIE) of the oxidation of AgNPs. The intrinsic one-by-one analytical capability of NIE as well as the participation of all of the atoms of the AgNPs in signal transduction greatly elevates the detection sensitivity. Accordingly, the current sensor enables a limit of detection (LOD) of 5 pg/mL for AFP analysis with high specificity and efficiency. More importantly, reliable detection of AFP in diluted human sera of hepatocellular carcinoma (HCC) patients is successfully achieved, indicating that the NIE-based homogeneous immunoassay shows great potential in HCC liquid biopsy.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, Shandong, China
| | - Meijuan Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Feng Zhou
- Personalized Prescribing Inc., Suite 500, 150 Ferrand Dr, Toronto, Ontario M3C 3E5, Canada
| | - Hai-Long Yan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yi-Ge Zhou
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Liu X, Lin X, Pan X, Gai H. Multiplexed Homogeneous Immunoassay Based on Counting Single Immunocomplexes together with Dark-Field and Fluorescence Microscopy. Anal Chem 2022; 94:5830-5837. [PMID: 35380795 DOI: 10.1021/acs.analchem.1c05269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of multiplexed immunoassays is impeded by the difficulty in distinguishing labeled immunocomplexes from free probes and nonspecifically bound probes. Here, we attempted to overcome this issue by counting core-satellite-structured immunocomplexes simultaneously using dark-field and fluorescence microscopy. The tumor biomarkers of carcinoembryonic antigen (CEA), α-fetoprotein (AFP), and prostate-specific antigen (PSA) were chosen as model targets. Gold nanoparticles (AuNPs) with diameters of 70 nm were coated with the detection antibodies of the three targets. Quantum dot (QD) 525, QD 585, and QD 655 were modified with the capture antibodies of CEA, AFP, and PSA, respectively. Then, an immunocomplex containing one AuNP and one or several QDs was formed, whereas free and nonspecifically bound probes had either one AuNP or one QD. When observed with a transmission grating-based spectral microscope, the immunocomplexes had overlapping scattering and fluorescent spectral images and were therefore identified and quantified precisely. The biomarkers inside the immunocomplexes were recognized on the basis of the fluorescent first-order streaks of the QDs. Model biomarkers in buffer and in 12.6% blank plasma were quantified for validation. The limits of detection for CEA, PSA, and AFP in buffer were in dozens of femtomolar and were close to those in blank plasma. The results demonstrated that our approach worked well in distinguishing immunocomplexes from free and nonspecifically bound probes. The successful quantification of the three targets in five human plasma samples verified the reliability of our method in clinical applications.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xinyi Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xiaoyan Pan
- School of Medicine, the Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
7
|
Zhang Q, Li J, Pan X, Liu X, Gai H. Low-Numerical Aperture Microscope Objective Boosted by Liquid-Immersed Dielectric Microspheres for Quantum Dot-Based Digital Immunoassays. Anal Chem 2021; 93:12848-12853. [PMID: 34520178 DOI: 10.1021/acs.analchem.1c02709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantum dot (QD)-based digital immunoassays play an important role in ultrasensitive biomarker detection. However, the requirement of an objective with a high numerical aperture (NA) limits the application of this immunoassay. Here, high-quality imaging of massive single-QDs was achieved by the combination of an air objective (20×/0.4 NA) and liquid-immersed microspheres (150 μm, n = 2.2). The signal-to-noise ratio was comparable to that of a 100×/1.4 NA oil objective. Digital analysis of prostate-specific antigen (PSA) was performed within the dynamic range of 0-50 ng/mL and a limit of detection of 0.17 ng/mL. The measured serum data from the PSA were close to the values provided by a hospital. Using a low-magnification and low-NA objective may reduce the barrier of microscopy miniaturization and is beneficial to popularize biomolecular digital analysis.
Collapse
Affiliation(s)
- Qingquan Zhang
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jiajia Li
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaoyan Pan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xiaojun Liu
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Hongwei Gai
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
8
|
Liu X, Wu Z, Lin X, Bu W, Qin L, Gai H. A homogeneous digital biosensor for circulating tumor DNA by the enumeration of a dual-color quantum dot complex. Analyst 2021; 146:3034-3040. [PMID: 33949439 DOI: 10.1039/d1an00299f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monitoring ctDNA in blood is important for cancer management. Here, a one-step single particle counting approach was developed for directly quantifying ctDNA in plasma. Hairpin DNA containing a triple helix stem was immobilized onto QD 585 as a probe. The hairpin was opened by the target, and therefore hybridized with assistant DNA on QD 655, resulting in an aggregate of QD 585 and QD 655. The two-color QD aggregate was regarded as the target. Observed under a single particle transmission grating-based spectral microscope, the two-color QD aggregate was distinguished by a unique spectral pattern of two first-order streaks, and it was counted. The difference in the responses of the probes to perfect-match DNA, single-base mismatch DNA, and non-match DNA indicated that the probe had sufficient single-base discrimination capabilities. The success in plasma recovery tests demonstrated the feasibility of carrying out the direct detection of ctDNA in plasma.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Zhangjian Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Xinyi Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| | - Wei Bu
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.
| | - Lei Qin
- Xuzhou Haichuan Institute of Life Science Co. Ltd, Xuzhou, Jiangsu, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Shanghai Road 101, Xuzhou, Jiangsu, China.
| |
Collapse
|
9
|
Yin X, Chen B, He M, Hu B. A Homogeneous Multicomponent Nucleic Acid Enzyme Assay for Universal Nucleic Acid Detection by Single-Particle Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2021; 93:4952-4959. [PMID: 33689302 DOI: 10.1021/acs.analchem.0c05444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) has great potential for sensitive analysis of nucleic acids; however, it usually requires separation of target-induced nanoparticle reporters, and the sequence of probes on nanoparticle reporters has to be tuned for each target accordingly. Here, we developed a homogeneous multicomponent nucleic acid enzyme (MNAzyme) assay for universal nucleic acid detection. The two components of MNAzyme contain target recognition sites, substrate binding sites, and a catalytic core. Only in the presence of a specific nucleic acid target, the MNAzyme will assemble to trigger its nucleic acid enzyme activity and cleave its substrate (Linker DNA). The Linker DNA could link gold nanoparticle (AuNP) probes to form a larger assembled particle, while the cleavage of Linker DNA will disturb the linkage between probes, inducing a smaller assembled particle. The assembled particles with different sizes could be differentiated and sensitively detected in SP-ICP-MS, which also enables the tolerance of a complex matrix. By simply altering the sequences of the target recognition sites in MNAzyme, we applied the assay for two types of nucleic acids (long strand DNA and short strand RNA), malaria DNA and miRNA-10b. With increasing the target concentration, the signal intensity of each assembled particle decreases, but the frequency of assembled particle pulse increases. Both targets could be quantitatively detected from 0.1 to 25 pmol L-1 with high specificity in serum samples. The developed MNAzyme-SP-ICP-MS assay possesses simple operation in a homogeneous reaction, easy tunability for multiple types of nucleic acid targets, and good compatibility with clinic samples.
Collapse
Affiliation(s)
- Xiao Yin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Liu X, Sun Y, Lin X, Pan X, Wu Z, Gai H. Digital Duplex Homogeneous Immunoassay by Counting Immunocomplex Labeled with Quantum Dots. Anal Chem 2021; 93:3089-3095. [DOI: 10.1021/acs.analchem.0c04020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Yuanyuan Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Xinyi Lin
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Xiaoyan Pan
- School of Medicine, The Second Affiliated Hospital of Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Zhangjian Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, 101 Shanghai Road, Tongshan District, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
11
|
Zhang Q, Li J, Su Y, Pan X, Gai H. Ball-lens assisted sensitivity improvement of fluorescence immunoassay in microchannels. RSC Adv 2021; 11:27541-27546. [PMID: 35480679 PMCID: PMC9037790 DOI: 10.1039/d1ra04360a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
A contactless and ball-lens assisted sensitivity improvement method was present for the fluorescence or luminescence immunoassay in microchannel.
Collapse
Affiliation(s)
- Qingquan Zhang
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jiajia Li
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Yuting Su
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiaoyan Pan
- Department of Laboratory Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hongwei Gai
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
12
|
Farka Z, Mickert MJ, Pastucha M, Mikušová Z, Skládal P, Gorris HH. Fortschritte in der optischen Einzelmoleküldetektion: Auf dem Weg zu höchstempfindlichen Bioaffinitätsassays. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zdeněk Farka
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
| | - Matthias J. Mickert
- Institut für Analytische Chemie, Chemo- und BiosensorikUniversität Regensburg Universitätsstraße 31 93040 Regensburg Deutschland
| | - Matěj Pastucha
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University 625 00 Brno Czech Republic
| | - Zuzana Mikušová
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University 625 00 Brno Czech Republic
| | - Petr Skládal
- CEITEC – Central European Institute of TechnologyMasaryk University 625 00 Brno Czech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University 625 00 Brno Czech Republic
| | - Hans H. Gorris
- Institut für Analytische Chemie, Chemo- und BiosensorikUniversität Regensburg Universitätsstraße 31 93040 Regensburg Deutschland
| |
Collapse
|
13
|
Farka Z, Mickert MJ, Pastucha M, Mikušová Z, Skládal P, Gorris HH. Advances in Optical Single-Molecule Detection: En Route to Supersensitive Bioaffinity Assays. Angew Chem Int Ed Engl 2020; 59:10746-10773. [PMID: 31869502 PMCID: PMC7318240 DOI: 10.1002/anie.201913924] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The ability to detect low concentrations of analytes and in particular low-abundance biomarkers is of fundamental importance, e.g., for early-stage disease diagnosis. The prospect of reaching the ultimate limit of detection has driven the development of single-molecule bioaffinity assays. While many review articles have highlighted the potentials of single-molecule technologies for analytical and diagnostic applications, these technologies are not as widespread in real-world applications as one should expect. This Review provides a theoretical background on single-molecule-or better digital-assays to critically assess their potential compared to traditional analog assays. Selected examples from the literature include bioaffinity assays for the detection of biomolecules such as proteins, nucleic acids, and viruses. The structure of the Review highlights the versatility of optical single-molecule labeling techniques, including enzymatic amplification, molecular labels, and innovative nanomaterials.
Collapse
Affiliation(s)
- Zdeněk Farka
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
| | - Matthias J. Mickert
- Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| | - Matěj Pastucha
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Zuzana Mikušová
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Petr Skládal
- CEITEC – Central European Institute of TechnologyMasaryk University625 00BrnoCzech Republic
- Department of BiochemistryFaculty of ScienceMasaryk University625 00BrnoCzech Republic
| | - Hans H. Gorris
- Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| |
Collapse
|
14
|
Huang Z, Wang C, Liu R, Su Y, Lv Y. Self-Validated Homogeneous Immunoassay by Single Nanoparticle in-Depth Scrutinization. Anal Chem 2020; 92:2876-2881. [PMID: 31910615 DOI: 10.1021/acs.analchem.9b05596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The most convenient method for the clinical routine analysis of disease biomarkers is homogeneous immunoassay, which minimizes the requirements for automation and time-/lab-consumption. Despite great success, because sample constituents are not removed by a separation or washing step, a major challenge in conducting homogeneous immunoassays for the practical application is the matrix effect-related inaccuracy. Herein, to guarantee an accurate quantification, a self-validated homogeneous immunoassay was proposed, by simultaneously scrutinizing both frequency and intensity of single gold nanoparticles. The two analytical modes of single particle inductively coupled plasma mass spectrometry (ICPMS) correlated well with each other, resulting in a self-validation mechanism for the accurate immunoassay. Both two modes of the proposed method provided linear ranges of 2 orders of magnitude and LODs of pM level. Thanks to the self-validated strategy and the high tolerance of the matrix effect of ICPMS, the proposed homogeneous immunoassay was successfully demonstrated in a series of human serum samples, with results in good accordance with clinical routine methods.
Collapse
Affiliation(s)
- Zili Huang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu , Sichuan 610064 , China
| | - Chaoqun Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu , Sichuan 610064 , China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu , Sichuan 610064 , China
| | - Yingying Su
- Analytical & Testing Center , Sichuan University , Chengdu 610064 , China
| | - Yi Lv
- Analytical & Testing Center , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
15
|
Zhang Q, Zhang X, Li J, Gai H. Nonstochastic Protein Counting Analysis for Precision Biomarker Detection: Suppressing Poisson Noise at Ultralow Concentration. Anal Chem 2019; 92:654-658. [PMID: 31820622 DOI: 10.1021/acs.analchem.9b04809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein counting analysis obtains the quantitative results of specific protein through counting the number of target signals and displays a great value in disease diagnosis. Current protein counting techniques just stochastically count a small portion of the target signal, which causes a considerable information loss and limits the accuracy and precision of the protein assay at ultralow concentration. Here, we present a nonstochastic and ultrasensitive protein counting method through combining multiround evaporation-induced particle sedimentation, grid-assisted multiframe imaging, and microsphere-enhanced high-resolution signals. Using carcinoembryonic antigen (CEA) as the model, the dynamic range was from 5 × 10-18 M (aM) to 5 × 10-16 M, and the limit of detection was 4.9 aM. For CEA-spiked plasma detection, the relative standard deviation and the relative error of CEA concentrations were both lower than 8.0%, and the recoveries reached 92.5% and 98.8% for 20.0 aM and 40.0 aM CEA respectively. Two clinical plasma samples were measured by the standard addition method, and the results showed little deviation with the values provided by the hospital. The established approach suppresses Poisson noise of the stochastic counting, offers ultrahigh sensitivity, and features a remarkable potential in early disease screening.
Collapse
Affiliation(s)
- Qingquan Zhang
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , China
| | - Xuebing Zhang
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , China
| | - Jiajia Li
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , China
| | - Hongwei Gai
- Jiangsu Key Laboratory of Green Synthesis for Functional Materials, School of Chemistry and Materials Science , Jiangsu Normal University , Xuzhou , Jiangsu 221116 , China
| |
Collapse
|
16
|
Liu X, Zhang Y, Liang A, Ding H, Gai H. Plasmonic resonance energy transfer from a Au nanosphere to quantum dots at a single particle level and its homogenous immunoassay. Chem Commun (Camb) 2019; 55:11442-11445. [DOI: 10.1039/c9cc05548g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PRET from a AuNS to a QD is discovered at a single particle level, and then is used to develop ultra-sensitive homogenous immunoassays.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Yusu Zhang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Aiye Liang
- Department of Physical Sciences
- Charleston Southern University
- North Charleston
- USA
| | - Hongwei Ding
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Hongwei Gai
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|