1
|
Chen X, Li Y. Solution-Processed Fabrication of Ni 3S 2-Based Nanoheterostructure on Silicon Heterojunction Photocathode for Boosting Solar Hydrogen Generation. SMALL METHODS 2025; 9:e2401075. [PMID: 39533497 DOI: 10.1002/smtd.202401075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Silicon heterojunction (SHJ) solar cell is an advanced and mature photovoltaic cell. Development of photoelectrochemical (PEC) water splitting devices for hydrogen fuel production using SHJ solar cells is considered as a promising approach to address energy crisis. To achieve this goal, it is necessary to deposit passivation layer and cocatalyst layer on the photoelectrode. However, the development of low-cost and scalable preparation methods for high-quality passivation and cocatalyst layer continues to be a significant challenge. Herein, an efficient passivation layer and hydrogen evolution reaction (HER) catalyst are successfully fabricated via solution processed methods. To improve the HER activity of Ni3S2, a Ni3S2-based nanoheterostructure of crystalline Ni3S2, Ni, and amorphous Y(OH)3 is constructed. The optimized photocathode exhibits excellent PEC-HER performance, which achieves a saturated photocurrent of -35.5 mA cm-2 and an applied bias photon-to-current efficiency (ABPE) of 8.4 ± 0.1% under simulated AM1.5G one-sun illumination and more than 120 h of continuous water splitting. This study paves a way for the design and large-scale manufacturing of cost-efficient SHJ photocathode devices.
Collapse
Affiliation(s)
- Xiaoming Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yuexiang Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
2
|
Chen X, Li Y. Solution Processing Silicon Heterojunction Photocathode for Efficient and Stable Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400782. [PMID: 38644229 DOI: 10.1002/smll.202400782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Efficient and stable photocathodes are crucial for the development of photoelectrochemical (PEC) water-splitting devices. Silicon heterojunction (SHJ) solar cell is one of the most advanced photovoltaic cells. However, due to the instability of its outermost indium tin oxide (ITO) layers in the electrolyte, a protective layer needs to be introduced on its surface. Previously reported high-quality protective layers almost all involved the use of expensive thin film manufacturing techniques such as atomic layer deposition (ALD). In this work, for the first time, a new strategy is proposed of modifying SHJ-based photocathode with yttrium hydroxide (Y(OH)3) through two-step solution methods to simultaneously improve the stability and activity. The optimized SHJ photocathode exhibits a high applied bias photon-to-current efficiency (ABPE) of 8.4% under simulated 100 mW cm-2 (1 Sun) with an AM 1.5G filter in 0.5 m KOH. Furthermore, the obtained SHJ photocathode demonstrates excellent stability of at least 110 h at 0.3 V versus RHE. In this work, combining facile direct current magnetron sputtering with a solution treatment technique provides a novel design strategy, which lowers the threshold for preparing high-quality protective layer, and paves the way for developing economic, efficient, and stable SHJ-based PEC devices.
Collapse
Affiliation(s)
- Xiaoming Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yuexiang Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
3
|
Jiang B, Zhu J, Xia Z, Lyu J, Li X, Zheng L, Chen C, Chaemchuen S, Bu T, Verpoort F, Mu S, Wu J, Wang J, Kou Z. Correlating Single-Atomic Ruthenium Interdistance with Long-Range Interaction Boosts Hydrogen Evolution Reaction Kinetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310699. [PMID: 37967925 DOI: 10.1002/adma.202310699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Correlated single-atom catalysts (c-SACs) with tailored intersite metal-metal interactions are superior to conventional catalysts with isolated metal sites. However, precise quantification of the single-atomic interdistance (SAD) in c-SACs is not yet achieved, which is essential for a crucial understanding and remarkable improvement of the correlated metal-site-governed catalytic reaction kinetics. Here, three Ru c-SACs are fabricated with precise SAD using a planar organometallic molecular design and π-π molecule-carbon nanotube confinement. This strategy results in graded SAD from 2.4 to 9.3 Å in the Ru c-SACs, wherein tailoring the Ru SAD into 7.0 Å generates an exceptionally high turnover frequency of 17.92 H2 s-1 and a remarkable mass activity of 100.4 A mg-1 under 50 and 100 mV overpotentials, respectively, which is superior to all the Ru-based catalysts reported previously. Furthermore, density functional theory calculations confirm that Ru SAD has a negative correlation with its d-band center owing to the long-range interactions induced by distinct local atomic geometries, resulting in an appropriate electrostatic potential and the highest catalytic activity on c-SACs with 7.0 Å Ru SAD. The present study promises an attractive methodology for experimentally quantifying the metal SAD to provide valuable insights into the catalytic mechanism of c-SACs.
Collapse
Affiliation(s)
- Bowen Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhenzhi Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiahui Lyu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xingchuan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, China
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Tongle Bu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jinsong Wu
- Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - John Wang
- Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Zongkui Kou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, 572000, China
- Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
4
|
Zhu X, Li Y, Yang Y, He Y, Gao M, Peng W, Wu Q, Zhang G, Zhou Y, Chen F, Bao J, Li W. Ordered micropattern arrays fabricated by lung-derived dECM hydrogels for chemotherapeutic drug screening. Mater Today Bio 2022; 15:100274. [PMID: 35601895 DOI: 10.1016/j.mtphys.2020.100274] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/28/2023] Open
Abstract
AIMS This study aims to evaluate ECM-coated micropattern arrays derived from decellularization of native porcine lungs as a novel three-dimensional cell culture platform. METHODS ECM derived from decellularization of native porcine lungs was exploited to prepare hydrogels. Then, dECM-coated micropattern arrays were fabricated at four different diameters (50, 100, 150 and 200 μm) using polydimethylsiloxane (PDMS). Two lung cancer cell lines, A549 and H1299, were tested on a dECM-coated micropattern array as a novel culture platform for cell adhesion, distribution, proliferation, viability, phenotype expression, and drug screening to evaluate the cytotoxicity of paclitaxel, doxorubicin and cisplatin. RESULTS The ECM derived from decellularization of native porcine lungs supported cell adhesion, distribution, viability and proliferation better than collagen I and Matrigel as the coated matrix on the surface. Moreover, the optimal diameter of the micropattern arrays was 100-150 μm, as determined by measuring the morphology, viability, proliferation and phenotype of the cancer cell spheroids. Cell spheroids of A549 and H1299 on dECM-coated micropattern arrays showed chemoresistance to anticancer drugs compared to that of the monolayer. The different distributions of HIF-1α, MCL-1 (in the center) and Ki-67 and MRP2 (in the periphery) of the spheroids demonstrated the good establishment of basal-lateral polarity and explained the chemoresistance phenomenon of spheroids. CONCLUSIONS This novel three-dimensional cell culture platform is stable and reliable for anticancer drug testing. Drug screening in dECM-coated micropattern arrays provides a powerful alternative to existing methods for drug testing and metabolic profiling in the drug discovery process.
Collapse
Affiliation(s)
- Xinglong Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ying Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuting He
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Mengyu Gao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanliu Peng
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiong Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guangyue Zhang
- West China School of Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yanyan Zhou
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weimin Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Wang K, Li B, Ren J, Chen W, Cui J, Wei W, Qu P. Ru@Ni 3S 2 nanorod arrays as highly efficient electrocatalysts for the alkaline hydrogen evolution reaction. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00673a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ru-decorated Ni3S2 nanorod arrays demonstrate an superior alkaline hydrogen evolution performance. Further modification with polyaniline could significantly enhance the long-term stability for continuous hydrogen generation.
Collapse
Affiliation(s)
- Kefeng Wang
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Bin Li
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jingxiao Ren
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Wenxia Chen
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Jinhai Cui
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Wei Wei
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Peng Qu
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, Henan, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Zhai W, Sakthivel T, Chen F, Du C, Yu H, Dai Z. Amorphous materials for elementary-gas-involved electrocatalysis: an overview. NANOSCALE 2021; 13:19783-19811. [PMID: 34846414 DOI: 10.1039/d1nr06764h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Given the critical demands on energy conversion, storage, and transportation, tremendous interest has been devoted to the field of material development related to energy harvesting, recently. As the only route towards energy utilization, the carriers with the characteristics of low carbon are regarded as the future choice, e.g., hydrogen and ammonia. To this end, electrocatalysis provides a green way to access these substances. However, the unfulfilled conversion efficiency is the bottleneck for practical application. In this review, the promising characteristics of amorphous materials and the amorphous-induced electrocatalytic enhancement (AIEE) were emphasized. In the beginning, the characteristics of amorphous materials are briefly summarized. The basic mechanism of heterogeneous electrocatalytic reactions is illustrated, including the hydrogen/oxygen evolution and oxygen/nitrogen reduction. In the third part, the electrocatalytic performance of amorphous materials is discussed in detail, and the mechanism of AIEE is highlighted. In the last section of this review, the challenges and outlook for the development of amorphous enhanced electrocatalysis are presented.
Collapse
Affiliation(s)
- Wenfang Zhai
- College of Electrical Engineering and Automation, Guilin University of Electronic Technology, Guilin 541000, PR China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| | - Thangavel Sakthivel
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710129, China
| | - Chengfeng Du
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710129, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Hong Yu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710129, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Zhengfei Dai
- College of Electrical Engineering and Automation, Guilin University of Electronic Technology, Guilin 541000, PR China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China.
| |
Collapse
|
7
|
Yang Z, Yang D, Wang Y, Long Y, Huang W, Fan G. Strong electrostatic adsorption-engaged fabrication of sub-3.0 nm PtRu alloy nanoparticles as synergistic electrocatalysts toward hydrogen evolution. NANOSCALE 2021; 13:10044-10050. [PMID: 34038495 DOI: 10.1039/d1nr00936b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alloying of Pt with Ru to form ultrafine and well-defined PtRu alloy nanoparticles (NPs) for synergistically electrocatalytic hydrogen evolution is highly desirable but remains a synthetic challenge. Here, we report a strong electrostatic adsorption (SEA)-assisted fabrication of ultrafine and homogeneously distributed PtRu alloy NPs using ethylenediaminetetraacetic acid tetrasodium-derived carbon (EC) as a matrix. The O, N-rich EC with a hierarchically macro/meso/microporous structure and the SEA-assisted formation of the [Ru(bpy)3][PtCl6] complex ensure the successful generation of ultrasmall PtRu alloy NPs (2.93 nm in diameter) with high dispersion. The optimal PtRu/EC-700 delivers excellent electrocatalytic properties with an ultralow overpotential (η10 = 18 mV), robust durability and good long-term stability for the alkaline hydrogen evolution reaction (HER). The ultrasmall PtRu alloy NPs with rich surface sites, the synergistic catalysis effect between Pt and Ru and the hierarchically macro/meso/microporous structure of O, N-rich EC cooperatively enhance the HER performance of PtRu/EC-700. This study provides an easy but effective way to construct metal alloy NPs with an ultrafine size and high dispersity for catalytic applications.
Collapse
Affiliation(s)
- Zhipeng Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | | | | | | | | | | |
Collapse
|
8
|
Cong N, Han Y, Tan L, Zhai C, Chen H, Han J, Fang H, Zhou X, Zhu Y, Ren Z. Nanoporous RuO2 characterized by RuO(OH)2 surface phase as an efficient bifunctional catalyst for overall water splitting in alkaline solution. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Yu J, He Q, Yang G, Zhou W, Shao Z, Ni M. Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02457] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Yu
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Qijiao He
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Guangming Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5, Xin Mofan Road, Nanjing 210009, PR China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5, Xin Mofan Road, Nanjing 210009, PR China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5, Xin Mofan Road, Nanjing 210009, PR China
- Department of Chemical Engineering, Curtin University, Perth, Western Australia 6845, Australia
| | - Meng Ni
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
- Environmental Energy Research Group, Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| |
Collapse
|
10
|
Hydrothermal synthesis of spherical Ru with high efficiency hydrogen evolution activity. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Creus J, De Tovar J, Romero N, García-Antón J, Philippot K, Bofill R, Sala X. Ruthenium Nanoparticles for Catalytic Water Splitting. CHEMSUSCHEM 2019; 12:2493-2514. [PMID: 30957439 DOI: 10.1002/cssc.201900393] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/05/2019] [Indexed: 05/12/2023]
Abstract
Both global warming and limited fossil resources make the transition from fossil to solar fuels an urgent matter. In this regard, the splitting of water activated by sunlight is a sustainable and carbon-free new energy conversion scheme able to produce efficient technological devices. The availability of appropriate catalysts is essential for the proper kinetics of the two key processes involved, namely, the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). During the last decade, ruthenium nanoparticle derivatives have emerged as true potential substitutes for the state-of-the-art platinum and iridium oxide species for the HER and OER, respectively. Thus, after a summary of the most common methods for catalyst benchmarking, this review covers the most significant developments of ruthenium-based nanoparticles used as catalysts for the water-splitting process. Furthermore, the key factors that govern the catalytic performance of these nanocatalysts are discussed in view of future research directions.
Collapse
Affiliation(s)
- Jordi Creus
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cédex 04, France
- Université de Toulouse, UPS, INPT, LCC, 31077, Toulouse Cédex 04, France
| | - Jonathan De Tovar
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Nuria Romero
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Jordi García-Antón
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Karine Philippot
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077, Toulouse Cédex 04, France
- Université de Toulouse, UPS, INPT, LCC, 31077, Toulouse Cédex 04, France
| | - Roger Bofill
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| | - Xavier Sala
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
| |
Collapse
|