1
|
Peralta-Cuevas E, Garcia-Atutxa I, Huerta-Saquero A, Villanueva-Flores F. The Role of Plant Virus-like Particles in Advanced Drug Delivery and Vaccine Development: Structural Attributes and Application Potential. Viruses 2025; 17:148. [PMID: 40006903 PMCID: PMC11861432 DOI: 10.3390/v17020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 02/27/2025] Open
Abstract
Plant virus-like particles (pVLPs) present distinct research advantages, including cost-effective production and scalability through plant-based systems, making them a promising yet underutilized alternative to traditional VLPs. Human exposure to plant viruses through diet for millions of years supports their biocompatibility and safety, making them suitable for biomedical applications. This review offers a practical guide to selecting pVLPs based on critical design factors. It begins by examining how pVLP size and shape influence cellular interactions, such as uptake, biodistribution, and clearance, key for effective drug delivery and vaccine development. We also explore how surface charge affects VLP-cell interactions, impacting binding and internalization, and discuss the benefits of surface modifications to enhance targeting and stability. Additional considerations include host range and biosafety, ensuring safe, effective pVLP applications in clinical and environmental contexts. The scalability of pVLP production across different expression systems is also reviewed, noting challenges and opportunities in large-scale manufacturing. Concluding with future perspectives, the review highlights the innovation potential of pVLPs in vaccine development, targeted therapies, and diagnostics, positioning them as valuable tools in biotechnology and medicine. This guide provides a foundation for selecting optimal pVLPs across diverse applications.
Collapse
Affiliation(s)
- Esperanza Peralta-Cuevas
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Unidad Morelos del Instituto Politécnico Nacional (IPN), Boulevard de la Tecnología No. 1036, Xochitepec 62790, Mexico;
| | - Igor Garcia-Atutxa
- Computer Science Department, Universidad Católica de Murcia (UCAM), Av. de los Jerónimos, 135, 30107 Murcia, Spain;
| | - Alejandro Huerta-Saquero
- Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México (UNAM), Km. 107 Carretera Tijuana-Ensenada, Ensenada 22860, Mexico;
| | - Francisca Villanueva-Flores
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA), Unidad Morelos del Instituto Politécnico Nacional (IPN), Boulevard de la Tecnología No. 1036, Xochitepec 62790, Mexico;
| |
Collapse
|
2
|
Peng H, Chen IA, Qimron U. Engineering Phages to Fight Multidrug-Resistant Bacteria. Chem Rev 2025; 125:933-971. [PMID: 39680919 PMCID: PMC11758799 DOI: 10.1021/acs.chemrev.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Facing the global "superbug" crisis due to the emergence and selection for antibiotic resistance, phages are among the most promising solutions. Fighting multidrug-resistant bacteria requires precise diagnosis of bacterial pathogens and specific cell-killing. Phages have several potential advantages over conventional antibacterial agents such as host specificity, self-amplification, easy production, low toxicity as well as biofilm degradation. However, the narrow host range, uncharacterized properties, as well as potential risks from exponential replication and evolution of natural phages, currently limit their applications. Engineering phages can not only enhance the host bacteria range and improve phage efficacy, but also confer new functions. This review first summarizes major phage engineering techniques including both chemical modification and genetic engineering. Subsequent sections discuss the applications of engineered phages for bacterial pathogen detection and ablation through interdisciplinary approaches of synthetic biology and nanotechnology. We discuss future directions and persistent challenges in the ongoing exploration of phage engineering for pathogen control.
Collapse
Affiliation(s)
- Huan Peng
- Cellular
Signaling Laboratory, International Research Center for Sensory Biology
and Technology of MOST, Key Laboratory of Molecular Biophysics of
MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Irene A. Chen
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry
and Biochemistry, University of California
Los Angeles, Los Angeles, California 90095-1592, United States
| | - Udi Qimron
- Department
of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Saleem W, Carpentier N, Hinnekens C, Oh D, Van Vlierberghe S, Braeckmans K, Nauwynck H. Porcine ex-vivo intestinal mucus has age-dependent blocking activity against transmissible gastroenteritis virus. Vet Res 2024; 55:113. [PMID: 39304917 DOI: 10.1186/s13567-024-01374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Transmissible gastroenteritis virus (TGEV) causes high mortality in young piglets (< 3 days of age). With aging, the susceptibility/morbidity/mortality rates drop. We previously hypothesized that the age-related changes in the intestinal mucus could be responsible for this resistance. Hence, this study investigated the effect of porcine intestinal mucus from 3-day and 3-week-old pigs on the free mobility of the virulent TGEV Miller strain, and on the infection in swine testicle (ST) cells. Single particle tracking (SPT) revealed that TGEV had significantly higher diffusion coefficients in 3-day mucus compared to 3-week mucus. TGEV and charged and uncharged control nanoparticles diffused freely in 3-day mucus but were hindered by 3-week mucus in the diffusion model; TGEV mimicked the diffusion behavior of negatively charged carboxylated particles. Inoculation of ST cells with TGEV in the presence of 3-week mucus resulted in a significantly lower average number of infected cells (30.9 ± 11.9/5 fields) compared with 3-day mucus (84.6 ± 16.4/5 fields). These results show that 3-week mucus has a significant TGEV-blocking activity compared to 3-day mucus in free diffusion and infection of the underlying susceptible cells. Additionally, a label-free proteomics analysis revealed an increased expression of mucin 13, known for negatively regulating the tight junctions in intestinal epithelium, in 3-day-old pigs. In 3-week-old pigs, a higher expression of mucin 2, a type of secreted mucin which is known for inhibiting coronavirus infection, was observed. Concludingly, this study demonstrated a protective effect of 3-week mucus against viral infections.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Nathan Carpentier
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Charlotte Hinnekens
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dayoung Oh
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
4
|
Allen GL, Grahn AK, Kourentzi K, Willson RC, Waldrop S, Guo J, Kay BK. Expanding the chemical diversity of M13 bacteriophage. Front Microbiol 2022; 13:961093. [PMID: 36003937 PMCID: PMC9393631 DOI: 10.3389/fmicb.2022.961093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Bacteriophage M13 virions are very stable nanoparticles that can be modified by chemical and genetic methods. The capsid proteins can be functionalized in a variety of chemical reactions without loss of particle integrity. In addition, Genetic Code Expansion (GCE) permits the introduction of non-canonical amino acids (ncAAs) into displayed peptides and proteins. The incorporation of ncAAs into phage libraries has led to the discovery of high-affinity binders with low nanomolar dissociation constant (K D) values that can potentially serve as inhibitors. This article reviews how bioconjugation and the incorporation of ncAAs during translation have expanded the chemistry of peptides and proteins displayed by M13 virions for a variety of purposes.
Collapse
Affiliation(s)
| | | | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Sean Waldrop
- Department of Chemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Brian K. Kay
- Tango Biosciences, Inc., Chicago, IL, United States
| |
Collapse
|
5
|
Dickmeis C, Kauth L, Commandeur U. From infection to healing: The use of plant viruses in bioactive hydrogels. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1662. [PMID: 32677315 DOI: 10.1002/wnan.1662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Plant viruses show great diversity in shape and size, but each species forms unique nucleoprotein particles that are symmetrical and monodisperse. The genetically programed structure of plant viruses allows them to be modified by genetic engineering, bioconjugation, or encapsulation to form virus nanoparticles (VNPs) that are suitable for a broad range of applications. Plant VNPs can be used to present foreign proteins or epitopes, to construct inorganic hybrid materials, or to carry molecular cargos, allowing their utilization as imaging reagents, immunomodulators, therapeutics, nanoreactors, and biosensors. The medical applications of plant viruses benefit from their inability to infect and replicate in human cells. The structural properties of plant viruses also make them useful as components of hydrogels for tissue engineering. Hydrogels are three-dimensional networks composed of hydrophilic polymers that can absorb large amounts of water. They are used as supports for tissue regeneration, as reservoirs for controlled drug release, and are found in contact lenses, many wound healing materials, and hygiene products. They are also useful in ecological applications such as wastewater treatment. Hydrogel-based matrices are structurally similar to the native extracellular matrix (ECM) and provide a scaffold for the attachment of cells. To fully replicate the functions of the ECM it is necessary to augment hydrogels with biological cues that regulate cellular interactions. This can be achieved by incorporating functionalized VNPs displaying ligands that influence the mechanical characteristics of hydrogels and their biological properties, promoting the survival, proliferation, migration, and differentiation of embedded cells. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Louisa Kauth
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|