1
|
Xiao F, Wang X, Ebel B, Oppel IM, Patureau FW. O 2-Mediated Cu-Catalyzed Dehydrogenative Phenothiazination. J Org Chem 2025; 90:1180-1185. [PMID: 39745341 DOI: 10.1021/acs.joc.4c02590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In contrast to what one can be led to believe upon inspecting some of the recent literature, the dehydrogenative phenothiazination reaction does not require onerous technologies, complicated setups, or advanced catalysts in order to be mild and sustainable. We demonstrate this herein with a most facile, cost-effective, and sustainable Cu(II) catalyzed method, under 1 atm of O2 at room temperature in methanol, providing broad scope and high yields. These new results further set the dehydrogenative phenothiazination reaction among the green and practical coupling concepts of chemistry.
Collapse
Affiliation(s)
- Fang Xiao
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Xingben Wang
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Ben Ebel
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Iris M Oppel
- Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
2
|
Armbruster C, Sellin M, Seiler M, Würz T, Oesten F, Schmucker M, Sterbak T, Fischer J, Radtke V, Hunger J, Krossing I. Pushing redox potentials to highly positive values using inert fluorobenzenes and weakly coordinating anions. Nat Commun 2024; 15:6721. [PMID: 39112470 PMCID: PMC11306567 DOI: 10.1038/s41467-024-50669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
While the development of weakly coordinating anions (WCAs) received much attention, the progress on weakly coordinating and inert solvents almost stagnated. Here we study the effect of strategic F-substitution on the solvent properties of fluorobenzenes C6FxH6-x (xFB, x = 1-5). Asymmetric fluorination leads to dielectric constants as high as 22.1 for 3FB that exceeds acetone (20.7). Combined with the WCAs [Al(ORF)4]- or [(FRO)3Al-F-Al(ORF)3]- (RF = C(CF3)3), the xFB solvents push the potentials of Ag+ and NO+ ions to +1.50/+1.52 V vs. Fc+/Fc. The xFB/WCA-system has electrochemical xFB stability windows that exceed 5 V for all xFBs with positive upper limits between +1.82 V (1FB) and +2.67 V (5FB) vs. Fc+/Fc. High-level ab initio calculations with inclusion of solvation energies show that these high potentials result from weak interactions of the ions with solvent and counterion. To access the available positive xFB potential range with stable reagents, the innocent deelectronator salts [anthraceneF]+∙[WCA]- and [phenanthreneF]+∙[WCA]- with potentials of +1.47 and +1.89 V vs. Fc+/Fc are introduced.
Collapse
Affiliation(s)
- Christian Armbruster
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Malte Sellin
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Matthis Seiler
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Tanja Würz
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Friederike Oesten
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Maximilian Schmucker
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Tabea Sterbak
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Julia Fischer
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Valentin Radtke
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Johannes Hunger
- Molecular Spectroscopy Department, Max-Planck-Institut for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany.
| |
Collapse
|
3
|
Brahmachari G. Practice of green chemistry strategies in synthetic organic chemistry: a glimpse of our sincere efforts in green chemistry research. Chem Commun (Camb) 2024; 60:8153-8169. [PMID: 38978452 DOI: 10.1039/d4cc02249a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This feature article summarises our recent contributions (2019-2023) in designing and developing a handful of promising organic transformations for accessing several diversely functionalised biologically relevant organic scaffolds, following the green chemistry principles, particularly focusing on the application of low-energy visible light, electrochemistry, ball-milling, ultrasound, and catalyst- and additive-free synthetic strategies.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731 235, West Bengal, India.
| |
Collapse
|
4
|
Liu HL, Zhang RJ, Han DY, Feng Y, Luo TH, Xu DZ. Dehydroaromatization of Indolines and Cyclohexanones with Thiol Access to Aryl Sulfides under Basic Conditions. J Org Chem 2023. [PMID: 37402407 DOI: 10.1021/acs.joc.3c00906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Aryl sulfides are common and ubiquitous motifs in natural products and pharmaceuticals. Presented herein is the first example of the synthesis of diaryl sulfide derivatives via dehydroaromatization under simple basic conditions. Dehydroaromatization reactions between indolines or cyclohexanones with aryl thiols are performed in an environmentally benign manner by the use of air (molecular oxygen) as the oxidant, with producing water as the only byproduct. The methodology provides a simple and practical route to diaryl sulfides with wide functional groups in good to excellent yields. Preliminary mechanistic studies suggest that a radical process is involved in the transformation.
Collapse
Affiliation(s)
- Han-Le Liu
- National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ren-Jia Zhang
- National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dong-Yang Han
- National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Feng
- National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tian-Hao Luo
- National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Sun S, Ye H, Liu H, Guo Y, Gao Z, Pan L, Li J, Bi X. Efficient Synthesis of 3-Mercaptoindoles via HI-Promoted Sulfenylation of Indoles with Sodium Sulfinates. ChemistryOpen 2023; 12:e202300002. [PMID: 36971064 PMCID: PMC10041381 DOI: 10.1002/open.202300002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Indexed: 03/29/2023] Open
Abstract
A new direct sulfenylation method of indoles by sodium sulfinates and hydroiodic acid was developed giving variety of 3-sulfenylindoles in high yields under mild conditions without using any catalysts or other additives. In situ-generated RS-I species are supposed to be mainly responsible for the key electrophilic alkyl- or aryl-thiolation process.
Collapse
Affiliation(s)
- Shengnan Sun
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Hexia Ye
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Haibo Liu
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Yongbiao Guo
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Zhenhua Gao
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Li Pan
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Junchen Li
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| | - Xiaojing Bi
- State Key Laboratory of NBC Protection for Civilian102205BeijingChina
| |
Collapse
|
6
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
7
|
Morimoto K, Yanase K, Toda K, Takeuchi H, Dohi T, Kita Y. Cyclic Hypervalent Iodine-Induced Oxidative Phenol and Aniline Couplings with Phenothiazines. Org Lett 2022; 24:6088-6092. [PMID: 35921162 DOI: 10.1021/acs.orglett.2c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-H/N-H bond functionalization for direct intermolecular aryl C-N couplings is a useful synthetic process. In this study, we achieved metal-free cross-dehydrogenative coupling of phenols and anilines with phenothiazines using hypervalent iodine reagents. This method affords selective amination products under mild conditions. Electron-rich phenols and anilines could be employed, affording moderate-to-high yields of N-arylphenothiazines. Aniline amination proceeded efficiently at 20 °C, a previously unreported phenomenon.
Collapse
Affiliation(s)
- Koji Morimoto
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.,Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Kana Yanase
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Kentaro Toda
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Takeuchi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.,Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Yasuyuki Kita
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
8
|
Brites NP, Dilelio MC, Schumacher RF, Kaufman TS, Silveira CC. A Convenient Wittig‐Horner Mediated Synthesis of 3‐Vinylsulfide Derivatives of Indoles. ChemistrySelect 2022. [DOI: 10.1002/slct.202201350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nathan P. Brites
- Departamento de Química Universidade Federal de Santa Maria Santa Maria RS 97105-900 Brazil
| | - Marina C. Dilelio
- Departamento de Química Universidade Federal de Santa Maria Santa Maria RS 97105-900 Brazil
| | - Ricardo F. Schumacher
- Departamento de Química Universidade Federal de Santa Maria Santa Maria RS 97105-900 Brazil
| | - Teodoro S. Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) Suipacha 531 Rosario, SF S2002LRK Argentina
| | - Claudio C. Silveira
- Departamento de Química Universidade Federal de Santa Maria Santa Maria RS 97105-900 Brazil
| |
Collapse
|
9
|
Purtsas A, Rosenkranz M, Dmitrieva E, Kataeva O, Knölker H. Iron-Catalyzed Oxidative C-O and C-N Coupling Reactions Using Air as Sole Oxidant. Chemistry 2022; 28:e202104292. [PMID: 35179270 PMCID: PMC9314016 DOI: 10.1002/chem.202104292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/31/2023]
Abstract
We describe the oxygenation of tertiary arylamines, and the amination of tertiary arylamines and phenols. The key step of these coupling reactions is an iron-catalyzed oxidative C-O or C-N bond formation which generally provides the corresponding products in high yields and with excellent regioselectivity. The transformations are accomplished using hexadecafluorophthalocyanine-iron(II) (FePcF16 ) as catalyst in the presence of an acid or a base additive and require only ambient air as sole oxidant.
Collapse
Affiliation(s)
- Alexander Purtsas
- Fakultät ChemieTechnische Universität DresdenBergstraße 6601069DresdenGermany
| | - Marco Rosenkranz
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstraße 2001069DresdenGermany
| | - Evgenia Dmitrieva
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstraße 2001069DresdenGermany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of SciencesArbuzov Str. 8Kazan420088Russia
| | | |
Collapse
|
10
|
Fisyuk AS, Samsonenko AL, Kostyuchenko AS, Zheleznova TY, Shuvalov VY, Vlasov IS. Synthesis of New Fused 4H-Thieno[3,2-b]pyrrole Derivatives via Decomposition of Methyl 4-Azido-5-arylthiophene-2-carboxylates. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1799-9339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThis article is focused on the development of practical approaches to the synthesis of 4-azido-5-arylthiophene-2-carboxylates and 4-amino-5-arylthiophene-2-carboxylates using the Fiesselmann reaction. The photochemical and thermal (including microwave-assisted) decomposition of 4-azido-5-arylthiophene-2-carboxylates have been studied in order to synthesize fused 4H-thieno[3,2-b]pyrrole derivatives. The proposed approaches allow to obtain functionally substituted heteroacenes, which are of interest as building blocks for organic semiconductors.
Collapse
Affiliation(s)
- Alexander S. Fisyuk
- Laboratory of New Organic Materials, Omsk State Technical University
- Department of Organic Chemistry, Omsk F. M. Dostoevsky State University
| | - Anna L. Samsonenko
- Laboratory of New Organic Materials, Omsk State Technical University
- Faculty of Chemistry, Silesian University of Technology
| | - Anastasia S. Kostyuchenko
- Laboratory of New Organic Materials, Omsk State Technical University
- Department of Organic Chemistry, Omsk F. M. Dostoevsky State University
| | - Tatyana Yu. Zheleznova
- Laboratory of New Organic Materials, Omsk State Technical University
- Department of Organic Chemistry, Omsk F. M. Dostoevsky State University
| | - Vladislav Yu. Shuvalov
- Laboratory of New Organic Materials, Omsk State Technical University
- Department of Organic Chemistry, Omsk F. M. Dostoevsky State University
| | - Igor S. Vlasov
- Department of Organic Chemistry, Omsk F. M. Dostoevsky State University
| |
Collapse
|
11
|
Benchouaia R, Nandi S, Maurer C, Patureau FW. O 2-Mediated Dehydrogenative Phenoxazination of Phenols. J Org Chem 2022; 87:4926-4935. [PMID: 35276045 PMCID: PMC8981320 DOI: 10.1021/acs.joc.1c02827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Phenoxazines, in
particular N-arylated phenoxazines, represent
an increasingly important scaffold in the material sciences. Moreover,
the oxygen-gas-mediated dehydrogenative phenochalcogenazination concept
of phenols has been developed and exemplified for X = sulfur and recently
for X = selenium and tellurium. The smallest chalcogen, X = oxygen,
is herein exemplified with various functional groups under a likewise
trivial oxygen atmosphere.
Collapse
Affiliation(s)
- Rajaa Benchouaia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Shiny Nandi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Clemens Maurer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|
12
|
Vemuri P, Cremer C, Patureau FW. Te(II)-Catalyzed Cross-Dehydrogenative Phenothiazination of Anilines. Org Lett 2022; 24:1626-1630. [PMID: 35192766 PMCID: PMC8902801 DOI: 10.1021/acs.orglett.2c00125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/11/2022]
Abstract
Oxidative clicklike reactions are useful for the late-stage functionalization of pharmaceuticals and organic materials. Hence, novel methodologies that enable such transformations are in high demand. Herein we describe a tellurium(II)-catalyzed cross-dehydrogenative phenothiazination (CDP) of aromatic amines. A key feature of this method is a cooperative effect between the phenotellurazine catalyst and the silver salt, which serves as a chemical oxidant for the reaction. This novel catalysis concept therefore enables a considerably broader scope compared with previous chemical oxidation methods.
Collapse
Affiliation(s)
- Pooja
Y. Vemuri
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christopher Cremer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
13
|
Polychronidou V, Krupp A, Strohmann C, Antonchick AP. Cascade aza-Wittig/6π-Electrocyclization in the Synthesis of 1,6-Dihydropyridines. Org Lett 2021; 23:6024-6029. [PMID: 34291925 PMCID: PMC8397428 DOI: 10.1021/acs.orglett.1c02099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A metal-free protocol
for the synthesis of substituted 1,6-dihydropyridines
with quaternary stereogenic centers via a cascade aza-Wittig/6π-electrocyclization
process has been developed. The high functional group compatibility
and broad scope of this method were demonstrated by using a wide range
of easily available vinyliminophosphoranes and ketones, with
yields up to 97%. A modification of the obtained products allowed
for an increase in complexity and chemical diversity. Finally, attempts
for asymmetric synthesis of 1,6-dihydropyridines are demonstrated.
Collapse
Affiliation(s)
- Vasiliki Polychronidou
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn- Straße 6, 44227 Dortmund, Germany
| | - Anna Krupp
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn- Straße 6, 44227 Dortmund, Germany
| | - Carsten Strohmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn- Straße 6, 44227 Dortmund, Germany
| | - Andrey P Antonchick
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.,Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn- Straße 6, 44227 Dortmund, Germany.,Nottingham Trent University, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, United Kingdom
| |
Collapse
|
14
|
Han DY, Liu XP, Li RP, Xu DZ. Aerobic Cross-Dehydrogenative Coupling Reactions for Selective Mono- and Dithiolation of Phenols. J Org Chem 2021; 86:10166-10176. [PMID: 34252273 DOI: 10.1021/acs.joc.1c00898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient strategy for the direct thiolation of phenols under transition metal-free and solvent-free conditions has been developed. These reactions are operationally simple with employing air (molecular oxygen) as an ideal oxidant and can selectively provide mono- and dithiolation products in good to excellent yields under basic conditions. The reaction tolerates a broad range of aryl thiols and arenes and is especially applicable for large-scale synthesis.
Collapse
Affiliation(s)
- Dong-Yang Han
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Peng Liu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ruo-Pu Li
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Brahmachari G, Bhowmick A, Karmakar I. Visible Light-Driven and Singlet Oxygen-Mediated Photochemical Cross-Dehydrogenative C 3-H Sulfenylation of 4-Hydroxycoumarins with Thiols Using Rose Bengal as a Photosensitizer. J Org Chem 2021; 86:9658-9669. [PMID: 34213909 DOI: 10.1021/acs.joc.1c00919] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible light (white light-emitting diode/direct sunlight)-driven photochemical synthesis of a new series of biologically interesting 3-(alkyl/benzylthio)-4-hydroxy-2H-chromen-2-ones has been achieved through a cross-dehydrogenative C3-H sulfenylation of 4-hydroxycoumarins with thiols at ambient temperature in the presence of rose bengal in acetonitrile under an oxygen atmosphere. The notable features of this newly developed method are mild reaction conditions, energy efficiency, metal-free synthesis, good to excellent yields, use of low-cost materials, and eco-friendliness.
Collapse
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Anindita Bhowmick
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Indrajit Karmakar
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| |
Collapse
|
16
|
Cremer C, Eltester MA, Bourakhouadar H, Atodiresei IL, Patureau FW. Dehydrogenative C-H Phenochalcogenazination. Org Lett 2021; 23:3243-3247. [PMID: 33848168 PMCID: PMC8155573 DOI: 10.1021/acs.orglett.1c00573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Heavy-atom-modified
chalcogen-fused triarylamine organic materials
are becoming increasingly important in the photochemical sciences.
In this context, the general and direct dehydrogenative C–H
phenochalcogenazination of phenols with the heavier chalcogens selenium
and tellurium is herein described. The latter dehydrogenative C–N
bond-forming processes operate under simple reaction conditions with
highly sustainable O2 serving as the terminal oxidant.
Collapse
Affiliation(s)
- Christopher Cremer
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - M Alexander Eltester
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Hicham Bourakhouadar
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Iuliana L Atodiresei
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
17
|
Batra A, Singh P, Singh KN. Latest Advancements in Transition‐Metal‐Free Carbon‐Heteroatom Bond Formation Reactions
via
Cross‐ Dehydrogenative Coupling. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aanchal Batra
- PG Department of Chemistry Mehr Chand Mahajan DAV College for Women, Sec 36/A Chandigarh 160036 India
| | | | - Kamal Nain Singh
- Department of Chemistry and Centre of Advanced studies in Chemistry Panjab University Chandigarh 160014 India
| |
Collapse
|
18
|
Dodds AC, Sutherland A. Regioselective C-H Thioarylation of Electron-Rich Arenes by Iron(III) Triflimide Catalysis. J Org Chem 2021; 86:5922-5932. [PMID: 33783222 DOI: 10.1021/acs.joc.1c00448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mild and regioselective method for the preparation of unsymmetrical biaryl sulfides using iron(III) catalysis is described. Activation of N-(arylthio)succinimides using the powerful Lewis acid iron(III) triflimide allowed the efficient thiolation of a range of arenes, including anisoles, phenols, acetanilides, and N-heterocycles. The method was applicable for the late-stage thiolation of tyrosine and tryptophan derivatives and was used as the key step for the synthesis of pharmaceutically relevant biaryl sulfur-containing compounds such as the antibiotic dapsone and the antidepressant vortioxetine. Kinetic studies revealed that while N-(arylthio)succinimides bearing electron-deficient arenes underwent thioarylation catalyzed entirely by iron(III) triflimide, N-(arylthio)succinimides with electron-rich arenes displayed an autocatalytic mechanism promoted by the Lewis basic product.
Collapse
Affiliation(s)
- Amy C Dodds
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Sutherland
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
19
|
Matsuzawa T, Hosoya T, Yoshida S. Transition-Metal-Free Synthesis of N-Arylphenothiazines through an N- and S-Arylation Sequence. Org Lett 2021; 23:2347-2352. [PMID: 33667111 DOI: 10.1021/acs.orglett.1c00515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An efficient synthetic method of N-arylphenothiazines from o-sulfanylanilines under transition-metal-free conditions is disclosed. An N- and S-arylation sequence of o-sulfanylanilines enabled us to synthesize a wide variety of N-arylphenothiazines. In particular, one-pot synthesis of N-arylphenothiazines was accomplished from easily available modules through preparation of o-sulfanylanilines by thioamination of aryne intermediates and following N- and S-arylation sequence.
Collapse
Affiliation(s)
- Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
20
|
Cremer C, Goswami M, Rank CK, Bruin B, Patureau FW. Tellur(II)/Tellur(III)‐katalysierte dehydrierende C‐N‐Bindungsbildung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Christopher Cremer
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | | | - Christian K. Rank
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| | - Bas Bruin
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam Niederlande
| | - Frederic W. Patureau
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Deutschland
| |
Collapse
|
21
|
Cremer C, Goswami M, Rank CK, de Bruin B, Patureau FW. Tellurium(II)/Tellurium(III)-Catalyzed Cross-Dehydrogenative C-N Bond Formation. Angew Chem Int Ed Engl 2021; 60:6451-6456. [PMID: 33320996 PMCID: PMC7986434 DOI: 10.1002/anie.202015248] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Indexed: 01/03/2023]
Abstract
The TeII /TeIII -catalyzed dehydrogenative C-H phenothiazination of challenging phenols featuring electron-withdrawing substituents under mild aerobic conditions and with high yields is described. These unexpected TeII /TeIII radical catalytic properties were characterized by cyclic voltammetry, EPR spectroscopy, kinetic experiments, and DFT calculations.
Collapse
Affiliation(s)
- Christopher Cremer
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | | - Christian K. Rank
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Bas de Bruin
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Frederic W. Patureau
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
22
|
Sathieshkumar PP, Anand Saibabu MD, Nagarajan R. A Cascade Approach for the Synthesis of 5-(Indol-3-yl)hydantoin: An Application to the Total Synthesis of (±)-Oxoaplysinopsin B. J Org Chem 2021; 86:3730-3740. [PMID: 33599509 DOI: 10.1021/acs.joc.0c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cascade approach to the synthesis of 5-(indol-3-yl)hydantoin framework has been developed by the reaction of indole with glyoxylic acid/pyruvic acid under a deep eutectic solution, (+)-tartaric acid-dimethylurea. N,N'-Dimethylurea from a deep eutectic solution functions as a reactant as well as a solvent mixture. Isolation of the intermediate, 5-hydroxyhydantoin, and its reaction with indole provides the mechanistic evidence for this reaction. This method was successfully applied in the first total synthesis of an alkaloid, (±)-oxoaplysinopsin B, with an overall yield of 48%.
Collapse
Affiliation(s)
| | | | - Rajagopal Nagarajan
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
23
|
Nucleophilic Aromatic Substitution of Polyfluoroarene to Access Highly Functionalized 10-Phenylphenothiazine Derivatives. Molecules 2021; 26:molecules26051365. [PMID: 33806360 PMCID: PMC7962002 DOI: 10.3390/molecules26051365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
Nucleophilic aromatic substitution (SNAr) reactions can provide metal-free access to synthesize monosubstituted aromatic compounds. We developed efficient SNAr conditions for p-selective substitution of polyfluoroarenes with phenothiazine in the presence of a mild base to afford the corresponding 10-phenylphenothiazine (PTH) derivatives. The resulting polyfluoroarene-bearing PTH derivatives were subjected to a second SNAr reaction to generate highly functionalized PTH derivatives with potential applicability as photocatalysts for the reduction of carbon–halogen bonds.
Collapse
|
24
|
Ni Y, Wan X, Zuo H, Bashir MA, Liu Y, Yu H, Liao RZ, Wu G, Zhong F. Iron-catalyzed cross-dehydrogenative C–H amidation of benzofurans and benzothiophenes with anilines. Org Chem Front 2021. [DOI: 10.1039/d0qo01651a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An efficient iron-catalyzed radical cross-dehydrogenative aromatic C–H amidation provides a straightforward access to structurally diverse diarylamine derivatives incorporating benzofuran/benzothiophene motifs.
Collapse
Affiliation(s)
- Yang Ni
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Xiang Wan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Honghua Zuo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Muhammad Adnan Bashir
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Yu Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Huaibin Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Guojiao Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| | - Fangrui Zhong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
| |
Collapse
|
25
|
Vershinin V, Forkosh H, Ben-Lulu M, Libman A, Pappo D. Mechanistic Insights into the FeCl 3-Catalyzed Oxidative Cross-Coupling of Phenols with 2-Aminonaphthalenes. J Org Chem 2021; 86:79-90. [PMID: 33296193 PMCID: PMC7783733 DOI: 10.1021/acs.joc.0c00874] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The selective FeCl3-catalyzed oxidative cross-coupling reaction between phenols and primary, secondary, and tertiary 2-aminonaphthalene derivatives was investigated. The generality of this scalable method provides a sustainable alternative for preparing N,O-biaryl compounds that are widely used as ligands and catalysts. Based on a comprehensive kinetic investigation, a catalytic cycle involving a ternary complex that binds to both the coupling partners and the oxidant during the key oxidative coupling step is postulated. Furthermore, the studies showed that the reaction is regulated by off-cycle acid-base and ligand exchange processes.
Collapse
Affiliation(s)
- Vlada Vershinin
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Hagit Forkosh
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Mor Ben-Lulu
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Libman
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Doron Pappo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
26
|
Bub CL, Thönnißen V, Patureau FW. Benzophenothiazine and Its Cr(III)-Catalyzed Cross Dehydrogenative Couplings. Org Lett 2020; 22:9196-9198. [PMID: 33196197 PMCID: PMC8046291 DOI: 10.1021/acs.orglett.0c03354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In stark contrast to phenothiazines and their prevalence for cross-dehydrogenative amination reactions, benzophenothiazine has a pronounced preference for cross-dehydrogenative C-C bond-forming reactions. Moreover, the substrate is very versatile, leading to several new classes of C-C bond-forming reactions and many new oxidative coupling product architectures, including unprecedented indole fused paddlewheel-like structures.
Collapse
Affiliation(s)
- Christina L Bub
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Vinzenz Thönnißen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
27
|
One-pot approach to construct benzo[4,5]thieno[3,2-b]indoles, pyrido[3′,2’:4,5]thieno[3,2-b]indoles and pyrazino[2′,3’:4,5]thieno[3,2-b]indoles based on the Fischer indole synthesis. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Jana S, Empel C, Pei C, Vinh Nguyen T, Koenigs RM. Gold‐catalyzed C−H Functionalization of Phenothiazines with Aryldiazoacetates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sripati Jana
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | - Claire Empel
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
- University of New South Wales School of Chemistry Sydney Australia
| | - Chao Pei
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
| | | | - Rene M. Koenigs
- RWTH Aachen University Institute of Organic Chemistry Landoltweg 1 D-52074 Aachen Germany
- University of New South Wales School of Chemistry Sydney Australia
| |
Collapse
|
29
|
Hazarika S, Barman P. Visible‐Light Cercosporin Catalyzed Sulfenylation of Electron‐Rich Compounds with Thiols under Transition‐Metal‐Free Conditions. ChemistrySelect 2020. [DOI: 10.1002/slct.202002512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sukanya Hazarika
- Department of Chemistry National Institute of Technology Silchar Assam 788010 India
| | - Pranjit Barman
- Department of Chemistry National Institute of Technology Silchar Assam 788010 India
| |
Collapse
|
30
|
Chen D, Wang Y, Cai XM, Cao X, Jiang P, Wang F, Huang S. Synthesis of Spiroisoxazolines via TEMPO/NaNO 2-Catalyzed Aerobic Oxidative Dearomatization. Org Lett 2020; 22:6847-6851. [PMID: 32808793 DOI: 10.1021/acs.orglett.0c02372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic, aerobic oxidative dearomatization protocol has been developed for the preparation of spiroisoxazline scaffolds from oximes using TEMPO and NaNO2 as the catalyst and O2 as the sole oxidant. This dearomatization methodology features its mild reaction conditions, good functional group tolerance, and an unprecedented broad substrate scope, encompassing phenols, aryl ethers, thiophenols, aryl sulfides, etc.
Collapse
Affiliation(s)
- Dengfeng Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yaming Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xu-Min Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Rd., Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ping Jiang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shenlin Huang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| |
Collapse
|
31
|
Wei Y, He J, Liu Y, Xu L, Vaccaro L, Liu P, Gu Y. Sulfenylation of Arenes with Ethyl Arylsulfinates in Water. ACS OMEGA 2020; 5:18515-18526. [PMID: 32743230 PMCID: PMC7392521 DOI: 10.1021/acsomega.0c02590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
A tetrabutylammonium iodide-mediated direct sulfenylation of arenes with ethyl arylsulfinates in water was developed. Various electron-rich arenes and ethyl arylsulfinates were investigated in the reaction, and a series of aryl sulfides were obtained in excellent yields. The advantages of this green protocol were simple reaction conditions (metal-free, water as the solvent, and under air), odorless and easily available sulfur reagent, broad substrate scope, and gram-scale synthesis. Moreover, the potential application of aryl sulfides was exemplified by further transformations.
Collapse
Affiliation(s)
- Yueting Wei
- School
of Chemistry and Chemical Engineering, The Key Laboratory for Green
Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832004, China
| | - Jing He
- School
of Chemistry and Chemical Engineering, The Key Laboratory for Green
Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832004, China
| | - Yali Liu
- School
of Chemistry and Chemical Engineering, The Key Laboratory for Green
Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832004, China
| | - Liang Xu
- School
of Chemistry and Chemical Engineering, The Key Laboratory for Green
Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832004, China
| | - Luigi Vaccaro
- Laboratory
of Green S. O. C., Dipartimento di Chimica, Biologia e Biotecnologie, Università Degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Ping Liu
- School
of Chemistry and Chemical Engineering, The Key Laboratory for Green
Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi City 832004, China
| | - Yanlong Gu
- Key
Laboratory of Material Chemistry for Energy Conversion and Storage,
Ministry of Education, Hubei Key Laboratory of Material Chemistry
and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
32
|
Liu S, Zhao F, Chen X, Deng G, Huang H. Aerobic Oxidative Functionalization of Indoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000285] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saiwen Liu
- College of Materials and Chemical Engineering Hunan City University Yiyang 413000 Hunan People's Republic of China
| | - Feng Zhao
- Key Laboratory for Antibody-based Drug and Intelligent Delivery System of Hunan Province Key Laboratory of Dong Medicine of Hunan Province School of Pharmaceutical Sciences Hunan University of Medicine Huaihua 418000 People's Republic of China
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Xing Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
33
|
Chen D, He T, Huang Y, Luo J, Wang F, Huang S. Synthesis of Spiroisoxazolines via an Oximation/Dearomatization Cascade under Air. Org Lett 2020; 22:4429-4434. [DOI: 10.1021/acs.orglett.0c01429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dengfeng Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - Tianyu He
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - Yuan Huang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - Jinyue Luo
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - Shenlin Huang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| |
Collapse
|
34
|
Pandey A, Chand S, Singh R, Kumar S, Singh KN. Iodine-Catalyzed Synthesis of 3-Arylthioindoles Employing a 1-Aryltriazene/CS 2 Combination as a New Sulfenylation Source. ACS OMEGA 2020; 5:7627-7635. [PMID: 32280906 PMCID: PMC7144174 DOI: 10.1021/acsomega.0c00472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
A practical approach for the regioselective synthesis of 3-arylthioindoles has been accomplished using a combination of 1-aryltriazene/CS2 as a new sulfenylation source. The methodology employs molecular iodine as a catalyst and is compatible with a variety of structurally diverse reactants.
Collapse
|
35
|
Vershinin V, Pappo D. M[TPP]Cl (M = Fe or Mn)-Catalyzed Oxidative Amination of Phenols by Primary and Secondary Anilines. Org Lett 2020; 22:1941-1946. [PMID: 32049535 PMCID: PMC7467820 DOI: 10.1021/acs.orglett.0c00296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Iron-
and manganese-catalyzed para-selective oxidative
amination of (4-R)phenols by primary and secondary anilines was developed.
Depending on the identity of the R group, the products of this efficient
reaction are either benzoquinone anils (C–N coupling) that
are produced via a sequential oxidative amination/dehydrogenation
(R = H), oxidative amination/elimination (R = OMe) steps, or N,O-biaryl compounds (C–C coupling)
that are formed when R = alkyl through an oxidative amination/[3,3]-sigmatropic
rearrangement (quinamine rearrangement) process.
Collapse
Affiliation(s)
- Vlada Vershinin
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Doron Pappo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
36
|
Pramanik M, Choudhuri K, Mal P. Metal-free C–S coupling of thiols and disulfides. Org Biomol Chem 2020; 18:8771-8792. [DOI: 10.1039/d0ob01741h] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A literature overview on C–S coupling reactions using thiols or disulfides as sulfur surrogates under metal-free conditions is presented. Reagents for the transformations include polyvalent iodines, peroxides, tert-butyl nitrite (TBN), DDQ, and aerial oxygen, among others.
Collapse
Affiliation(s)
- Milan Pramanik
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- India
| | - Khokan Choudhuri
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- India
| | - Prasenjit Mal
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER)
- HBNI
- India
| |
Collapse
|
37
|
Leonel G, Back DF, Zeni G. Synthesis of 3‐Substituted Chalcogenophene‐Fused Indoles from 2‐Alkynylindoles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Guilherme Leonel
- Laboratório de Síntese, Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM Santa Maria, Rio Grande do Sul Brazil 97105-900
| | - Davi F. Back
- Laboratório de Materiais Inorgânicos Departamento de Química, UFSM Santa Maria, Rio Grande do Sul Brazil 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM Santa Maria, Rio Grande do Sul Brazil 97105-900
| |
Collapse
|
38
|
Vemuri PY, Wang Y, Patureau FW. Para-Selective Dehydrogenative Phenothiazination of Hydroquinolines and Indolines. Org Lett 2019; 21:9856-9859. [PMID: 31793299 DOI: 10.1021/acs.orglett.9b03729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrogen-containing heterocyclic systems, such as hydroquinolines, indolines, and phenothiazines, are prevalent in pharmaceuticals, natural products, and organic materials. It is therefore important to develop novel reaction strategies that give access to such biologically relevant scaffolds. This report demonstrates a novel robust, para-selective C-N bond formation between phenothiazines and quinolines or indolines under extremely mild and user-friendly conditions. Furthermore, we bring forward a surprising discovery arising from the homocoupling of indolines through an unprecedented C5-H functionalization.
Collapse
Affiliation(s)
- Pooja Y Vemuri
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - Yongchao Wang
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| |
Collapse
|
39
|
Rank C, Özkaya B, Patureau FW. HBF 4- and AgBF 4-Catalyzed ortho-Alkylation of Diarylamines and Phenols. Org Lett 2019; 21:6830-6834. [PMID: 31429294 PMCID: PMC6900263 DOI: 10.1021/acs.orglett.9b02470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 02/06/2023]
Abstract
A silver-tetrafluoroborate- or HBF4-catalyzed ortho-alkylation reaction of phenols and diarylamines with styrenes has been explored. A broad substrate scope is presented as well as mechanistic experiments and discussion.
Collapse
Affiliation(s)
- Christian
K. Rank
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Bünyamin Özkaya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
40
|
Abstract
Metal-free N-H functionalization reactions represent an important strategy for sustainable C-N coupling reactions. In this report, we describe the visible light photolysis of aryl diazoacetates in the presence of some N-heterocycles that enables mild, metal-free N-H functionalization reactions of carbazole and azepine heterocycles (15 examples, up to 83% yield).
Collapse
Affiliation(s)
- Claire Empel
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , 52074 Aachen , Germany
| |
Collapse
|
41
|
Shi S, Chen J, Zhuo S, Wu Z, Fang M, Tang G, Zhao Y. Iodide‐Catalyzed Phosphorothiolation of Heteroarenes Using P(O)H Compounds and Elemental Sulfur. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900291] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shanshan Shi
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Jun Chen
- School of Pharmaceutical Sciences and Fujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Shaohua Zhuo
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Zi'ang Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Meijuan Fang
- School of Pharmaceutical Sciences and Fujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian ProvinceXiamen University Xiamen, Fujian 361005 People's Republic of China
| |
Collapse
|
42
|
Puthanveedu M, Polychronidou V, Antonchick AP. Catalytic Selective Metal-Free Cross-Coupling of Heteroaromatic N-Oxides with Organosilanes. Org Lett 2019; 21:3407-3411. [DOI: 10.1021/acs.orglett.9b01141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahesh Puthanveedu
- Abteilung Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44221 Dortmund, Germany
| | - Vasiliki Polychronidou
- Abteilung Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44221 Dortmund, Germany
| | - Andrey P. Antonchick
- Abteilung Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44221 Dortmund, Germany
| |
Collapse
|
43
|
|
44
|
|