Lankelma M, Olivares AM, de Bruin B. [Co(TPP)]-Catalyzed Formation of Substituted Piperidines.
Chemistry 2019;
25:5658-5663. [PMID:
30844097 PMCID:
PMC6563703 DOI:
10.1002/chem.201900587]
[Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 01/12/2023]
Abstract
Radical cyclization via cobalt(III)-carbene radical intermediates is a powerful method for the synthesis of (hetero)cyclic structures. Building on the recently reported synthesis of five-membered N-heterocyclic pyrrolidines catalyzed by CoII porphyrins, the [Co(TPP)]-catalyzed formation of useful six-membered N-heterocyclic piperidines directly from linear aldehydes is presented herein. The piperidines were obtained in overall high yields, with linear alkenes being formed as side products in small amounts. A DFT study was performed to gain a deeper mechanistic understanding of the cobalt(II)-porphyrin-catalyzed formation of pyrrolidines, piperidines, and linear alkenes. The calculations showed that the alkenes are unlikely to be formed through an expected 1,2-hydrogen-atom transfer to the carbene carbon. Instead, the calculations were consistent with a pathway involving benzyl-radical formation followed by radical-rebound ring closure to form the piperidines. Competitive 1,5-hydrogen-atom transfer from the β-position to the benzyl radical explained the formation of linear alkenes as side products.
Collapse