1
|
Liang J, Peng LJ, Zhu KL, Li ZA, Chen XL, Yang YD, Li Q, Bi QN, Cui J, Guan AJ, Liang TL, Hao X, Wang H, Li X, Gong HY. Synergistic regulation of metal-organic cage architectures via temperature- and solvent-driven atropisomerism. Proc Natl Acad Sci U S A 2025; 122:e2500357122. [PMID: 40339111 DOI: 10.1073/pnas.2500357122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/08/2025] [Indexed: 05/10/2025] Open
Abstract
Regulating multistimulus responses in artificial systems remains a challenge in smart material development. We present a versatile chemical switching system that precisely controls the self-assembly of metal-organic cages via temperature and solvent changes. The key component, cyclo[2](1,3-(4,6-dimethyl)benzene) (4-pyridine)[6](1,3-(4,6-dimethyl)benzene) (CP2), was generated as three atropisomers (1, 2, and 3) with Cs, C1, and C2v symmetries. Thermally, metastable isomers (1 and 2) convert into the stable isomer (3), which reacts with Pd2+ to form specific molecular cages. Depending on the solvent, either rectangular M2L2 cages (5' and 5) form in 1,4-dioxane or hexagonal M3L3 cages (6) in 1,1',2,2'-tetrachloroethane. The solvent dictates the cage type and enables reversible transformation between cages 5 and 6. Additionally, cage 5', formed from metastable isomer 1, can switch to other cage types (i.e., 5 or 6) depending on temperature and solvent conditions. This multipathway system offers a precise strategy for controlling self-assembly in smart materials.
Collapse
Affiliation(s)
- Jiaqi Liang
- Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Li-Jun Peng
- Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ke-Lin Zhu
- Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhi-Ao Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xu-Lang Chen
- Department of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Yu-Dong Yang
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224
| | - Qian Li
- Department of Analytical Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Qian-Nan Bi
- Department of Analytical Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jie Cui
- Department of Analytical Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ai-Jiao Guan
- Department of Analytical Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tong-Ling Liang
- Department of Analytical Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiang Hao
- Department of Analytical Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Heng Wang
- Department of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Department of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Xiaopeng Li
- Department of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Department of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Han-Yuan Gong
- Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
2
|
Pang XY, Zhou H, Xie X, Jiang W, Yang Y, Sessler JL, Gong HY. 1,3,5-2,4,6-Functionalized Benzene Molecular Cage: An Environmentally Responsive Scaffold that Supports Hierarchical Superstructures. Angew Chem Int Ed Engl 2024; 63:e202407805. [PMID: 38870085 DOI: 10.1002/anie.202407805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
New stimulus-responsive scaffolds are of interest as constituents of hierarchical supramolecular ensembles. 1,3,5-2,4,6-Functionalized, facially segregated benzene moieties have a time-honored role as building blocks for host molecules. However, their user as switchable motifs in the construction of multi-component supramolecular structures remains poorly explored. Here, we report a molecular cage 1, which consists of a bent anthracene dimer 3 paired with 1,3,5-tris(aminomethyl)-2,4,6-triethylbenzene 2. As the result of the pH-induced ababab↔bababa isomerization of the constituent-functionalized benzene units derived from 2, this cage can reversibly convert between an open state and a closed form, both in solution and in the solid state. Cage 1 was used to create stimuli-responsive hierarchical superstructures, namely Russian doll-like complexes with [K⊂18-crown-6⊂1]+ and [K⊂cryptand-222⊂1]+. The reversible assembly and disassembly of these superstructures could be induced by switching cage 1 from its open to closed form. The present study thus provides an unusual example where pH-triggered conformation motion within a cage-like scaffold is used to control the formation and disassociation of hierarchical ensembles.
Collapse
Affiliation(s)
- Xin-Yu Pang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hang Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yinhua Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jonathan L Sessler
- College of Chemistry, The University of Texas at Austin, Austin, Texas, 78712-1224, United States
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
3
|
Gao C, Li H, Zhao J, Bu L, Sun M, Wang J, Tao G, Wang L, Li L, Wen G, Hu Y. Atroposelective Formal [2 + 5] Macrocyclization Synthesis for a Novel All-Hydrocarbon Cyclo[7] Meta-Benzene Macrocycle. Molecules 2024; 29:3363. [PMID: 39064941 PMCID: PMC11279907 DOI: 10.3390/molecules29143363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
A novel axially chiral all-hydrocarbon cyclo[7] (1,3-(4,6-dimethyl)benzene (CDMB-7) was designed and synthesized using atroposelective[2 + 5] cyclization through Suzuki-Miyaura coupling. CDMB-7 adopts an irregular bowl-like shape with C2 symmetry and exhibits two diastereoisomers in its crystallographic structure. The conformational isomers of CDMB-7 racemates remain stable at high temperatures (393 K). High-performance liquid chromatography (HPLC) confirmed that a single chiral isomer will spontaneously undergo racemization within 30 min at room temperature. This finding opens up possibilities for achieving adaptive chirality in all-hydrocarbon cyclo[7] m-benzene macrocycles.
Collapse
Affiliation(s)
- Chao Gao
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Hongchen Li
- CNOOC Institute of Chemicals & Advanced Materials, Beijing 102209, China;
| | - Jing Zhao
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Lulu Bu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Mei Sun
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Jingrui Wang
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Gang Tao
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Longde Wang
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Li Li
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Guilin Wen
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Yunhu Hu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| |
Collapse
|
4
|
Chang X, Xu Y, von Delius M. Recent advances in supramolecular fullerene chemistry. Chem Soc Rev 2024; 53:47-83. [PMID: 37853792 PMCID: PMC10759306 DOI: 10.1039/d2cs00937d] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 10/20/2023]
Abstract
Fullerene chemistry has come a long way since 1990, when the first bulk production of C60 was reported. In the past decade, progress in supramolecular chemistry has opened some remarkable and previously unexpected opportunities regarding the selective (multiple) functionalization of fullerenes and their (self)assembly into larger structures and frameworks. The purpose of this review article is to provide a comprehensive overview of these recent developments. We describe how macrocycles and cages that bind strongly to C60 can be used to block undesired addition patterns and thus allow the selective preparation of single-isomer addition products. We also discuss how the emergence of highly shape-persistent macrocycles has opened opportunities for the study of photoactive fullerene dyads and triads as well as the preparation of mechanically interlocked compounds. The preparation of two- or three-dimensional fullerene materials is another research area that has seen remarkable progress over the past few years. Due to the rapidly decreasing price of C60 and C70, we believe that these achievements will translate into all fields where fullerenes have traditionally (third-generation solar cells) and more recently been applied (catalysis, spintronics).
Collapse
Affiliation(s)
- Xingmao Chang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| |
Collapse
|
5
|
Yang YD, Chen XL, Liang J, Fang JW, Sessler JL, Gong HY. Time-Dependent Solvent-Driven Solid-State Fluorescence-based Numeric Coding. J Am Chem Soc 2023. [PMID: 37327391 DOI: 10.1021/jacs.3c03727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Controllable solid-state transformations can provide a basis for novel functional materials. Herein, we report a series of solid-state systems that can be readily transformed between amorphous, co-crystalline, and mixed crystalline states via grinding or exposure to solvent vapors. The present solid materials were constructed using an all-hydrocarbon macrocycle, cyclo[8](1,3-(4,6-dimethyl)benzene) (D4d-CDMB-8) (host), and neutral aggregation-caused quenching dyes (guests), including 9,10-dibromoanthracene (1), 1,8-naphtholactam (2), diisobutyl perylene-3,9-dicarboxylate (3), 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (4), 4,7-di(2-thienyl)-benzo[2,1,3]thiadiazole (5), and 4-imino-3-(pyridin-2-yl)-4H-quinolizine-1-carbonitrile (6). Seven co-crystals and six amorphous materials were obtained via host-guest complexation. Most of these materials displayed turn-on fluorescence emission (up to 20-fold enhancement relative to the corresponding solid-state guests). The interconversion between amorphous, co-crystalline states, and crystalline mixtures could be induced by exposure to solvent vapors or by subjecting to grinding. The transformations could be monitored readily by means of single-crystal and powder X-ray diffraction analyses, as well as solid-state fluorescent emission spectroscopy. The externally induced structural interconversions resulted in time-dependent fluorescence changes. This allowed sets of privileged number array codes to be generated.
Collapse
Affiliation(s)
- Yu-Dong Yang
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Xu-Lang Chen
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Jiaqi Liang
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
| | - Ji-Wang Fang
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
| |
Collapse
|
6
|
Hirao T, Haino T. Supramolecular Ensembles Formed via Calix[5]arene-Fullerene Host-Guest Interactions. Chem Asian J 2022; 17:e202200344. [PMID: 35647739 DOI: 10.1002/asia.202200344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Indexed: 11/09/2022]
Abstract
This minireview introduces the research directions for the synthesis of supramolecular fullerene polymers. First, the discovery of host-guest complexes of pristine fullerenes is briefed. We focus on progress in supramolecular fullerene polymers directed by the use of calix[5]arene-fullerene interactions, which comprise linear, networked, helical arrays of fullerenes in supramolecular ensembles. The unique self-sorting behavior of right-handed and left-handed helical supramolecular fullerene arrays is discussed. Thereafter, an extensive investigation of the calix[5]arene-fullerene interaction for control over the chain structures of covalent polymers is introduced.
Collapse
Affiliation(s)
- Takehiro Hirao
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku, Chemistry, 1-3-1 Kagamiyama, 739-8526, Higashi-Hiroshima, JAPAN
| | - Takeharu Haino
- Hiroshima Daigaku - Higashihiroshima Campus: Hiroshima Daigaku, Department of Chemistry, 1-3-1 Kagamiyama, 739-8526, Higashi-Hiroshima, JAPAN
| |
Collapse
|
7
|
Jiang C, Hu SJ, Zhou LP, Yang J, Sun QF. Lanthanide-organic pincer hosts with allosteric-controlled metal ion binding specificity. Chem Commun (Camb) 2022; 58:5494-5497. [PMID: 35416812 DOI: 10.1039/d2cc01379g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of lanthanide-organic pincer hosts were synthesized, which showed allosteric-controlled metal ion binding selectivities due to the lanthanide-induced subtle changes of the central vacant binding site.
Collapse
Affiliation(s)
- Chen Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Jian Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Vasylevskyi SI, Raffy G, Salentinig S, Del Guerzo A, Fromm KM, Bassani DM. Multifunctional Anthracene-Based Ni-MOF with Encapsulated Fullerenes: Polarized Fluorescence Emission and Selective Separation of C 70 from C 60. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1397-1403. [PMID: 34967204 DOI: 10.1021/acsami.1c19141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report an anthracene-based Ni-MOF [Ni(II) metal-organic framework, {[Ni(μ2-L)2Cl2]·x(C6H6)·y(MeOH)}n (1), L = anthracene-9,10-diylbis(methylene)diisonicotinate] whose crystal structure reveals the presence of hexagonal channels with a pore size of 1.4 nm that can accommodate guests such as C60 and C70. Both confocal fluorescence and Raman microscopy results are in agreement with a homogeneous distribution of fullerenes throughout the single crystals of 1. Efficient energy transfer from 1 to the fullerenes was observed, which emitted partially polarized fluorescence emission. Stronger binding between 1 and C70 versus C60 was confirmed from HPLC analysis of the dissolved material and provides a basis for the selective retention of C70 in liquid chromatography columns packed with 1.
Collapse
Affiliation(s)
- Serhii I Vasylevskyi
- Chemistry Department, University of Fribourg, Chemin du Musee 9, Fribourg 1700, Switzerland
- University of Bordeaux, ISM CNRS UMR 5255, Talence 33400, France
| | - Guillaume Raffy
- University of Bordeaux, ISM CNRS UMR 5255, Talence 33400, France
| | - Stefan Salentinig
- Chemistry Department, University of Fribourg, Chemin du Musee 9, Fribourg 1700, Switzerland
| | - André Del Guerzo
- University of Bordeaux, ISM CNRS UMR 5255, Talence 33400, France
| | - Katharina M Fromm
- Chemistry Department, University of Fribourg, Chemin du Musee 9, Fribourg 1700, Switzerland
| | - Dario M Bassani
- University of Bordeaux, ISM CNRS UMR 5255, Talence 33400, France
| |
Collapse
|
9
|
Shi Q, Wang X, Liu B, Qiao P, Li J, Wang L. Macrocyclic host molecules with aromatic building blocks: the state of the art and progress. Chem Commun (Camb) 2021; 57:12379-12405. [PMID: 34726202 DOI: 10.1039/d1cc04400a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Macrocyclic host molecules play the central role in host-guest chemistry and supramolecular chemistry. The highly structural symmetry of macrocyclic host molecules can meet people's pursuit of aesthetics in molecular design, and generally means a balance of design, synthesis, properties and applications. For macrocyclic host molecules with highly symmetrical structures, building blocks, which could be described as repeat units as well, are the most fundamental elements for molecular design. The structural features and recognition ability of macrocyclic host molecules are determined by the building blocks and their connection patterns. Using different building blocks, different macrocyclic host molecules could be designed and synthesized. With decades of developments of host-guest chemistry and supramolecular chemistry, diverse macrocyclic host molecules with different building blocks have been designed and synthesized. Aromatic building blocks are a big family among the various building blocks used in constructing macrocyclic host molecules. In this feature article, the recent developments of macrocyclic host molecules with aromatic building blocks were summarized and discussed.
Collapse
Affiliation(s)
- Qiang Shi
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xuping Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bing Liu
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Panyu Qiao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Light Conversion Materials and Technology of Shandong Academy of Sciences, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jing Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Leyong Wang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China. .,Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Leith GA, Shustova NB. Graphitic supramolecular architectures based on corannulene, fullerene, and beyond. Chem Commun (Camb) 2021; 57:10125-10138. [PMID: 34523630 DOI: 10.1039/d1cc02896k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this Feature Article, we survey the advances made in the field of fulleretic materials over the last five years. Merging the intriguing characteristics of fulleretic molecules with hierarchical materials can lead to enhanced properties of the latter for applications in optoelectronic, biomaterial, and heterogeneous catalysis sectors. As there has been significant growth in the development of fullerene- and corannulene-containing materials, this article will focus on studies performed during the last five years exclusively, and highlight the recent trends in designing fulleretic compounds and understanding their properties, that has enriched the repertoire of carbon-rich functional materials.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
11
|
Czernek J, Brus J. On the Many-Body Expansion of an Interaction Energy of Some Supramolecular Halogen-Containing Capsules. Molecules 2021; 26:4431. [PMID: 34361581 PMCID: PMC8347495 DOI: 10.3390/molecules26154431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
A tetramer model was investigated of a remarkably stable iodine-containing supramolecular capsule that was most recently characterized by other authors, who described emergent features of the capsule's formation. In an attempt to address the surprising fact that no strong pair-wise interactions between any of the respective components were experimentally detected in condensed phases, the DFT (density-functional theory) computational model was used to decompose the total stabilization energy as a sum of two-, three- and four-body contributions. This model considers complexes formed between either iodine or bromine and the crucial D4d-symmetric form of octaaryl macrocyclic compound cyclo[8](1,3-(4,6-dimethyl)benzene that is surrounded by arenes of a suitable size, namely, either corannulene or coronene. A significant enthalpic gain associated with the formation of investigated tetramers was revealed. Furthermore, it is shown that the total stabilization of these complexes is dominated by binary interactions. Based on these findings, comments are made regarding the experimentally observed behavior of related multicomponent mixtures.
Collapse
Affiliation(s)
- Jiří Czernek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Square, 16206 Prague, Czech Republic;
| | | |
Collapse
|
12
|
Yamada H, Aratani N, Mei P, Kurosaki R, Matsumoto A. One-Pot Synthesis of a Cyclic Pyrene Octamer from Two Bifunctionalized Pyrene Monomers. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1705950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractA 2,2′-tert-butyl-5,9-6′,8′-cyclooctameric pyrenylene ([8]CP) was synthesized by a one-pot Suzuki–Miyaura cross-coupling reaction from two kinds of bifunctionalized monomers, as a rare example of a cyclic octamer. The octameric molecular structure of [8]CP was revealed by single-crystal X-ray diffraction analysis.
Collapse
|
13
|
Yang YD, Chen XL, Sessler JL, Gong HY. Emergent Self-Assembly of a Multicomponent Capsule via Iodine Capture. J Am Chem Soc 2020; 143:2315-2324. [PMID: 33356188 DOI: 10.1021/jacs.0c11838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Described here is a three-component self-assembly system that displays emergent behavior that differs from that of its constituents. The system comprises an all-hydrocarbon octaaryl macrocycle cyclo[8](1,3-(4,6-dimethyl)benzene (D4d-CDMB-8), corannulene (Cora), and I2. No appreciable interaction is seen between any pair of these three-components, either in cyclohexane or under various crystallization conditions. On the other hand, when all three-components are mixed in cyclohexane and allowed to undergo crystallization, a supramolecular iodine-containing capsule, ((D4d-CDMB-8)3⊃(Cora)2)⊃I2, is obtained. This all-hydrocarbon capsule consists of three D4d-CDMB-8 and two Cora subunits and contains a centrally bound I2 molecule as inferred from single-crystal and powder X-ray diffraction studies as well as solid-state 13C NMR and Raman spectroscopy. These analyses were complemented by solution-phase 1H NMR and UV-vis spectroscopic studies. No evidence of I2 escape from the capsule is seen, even at high temperatures (e.g., up to 418 K). The bound I2 is likewise protected from reaction with alkali or standard reductants in aqueous solution (e.g., saturated NaOH(aq) or aqueous Na2S2O3). It was also found that a mixed powder containing D4d-CDMB-8 and Cora in a 3:2 molar ratio could capture saturated I2 vapor or iodine from aqueous sources (e.g., 1.0 mM I2 in NaCl (35 wt %) or I2 + NaI(aq) (1.0 mM each)). The present system displays structural and functional features that go beyond what would be expected on the basis of a simple sum-of-the-components analysis. As such, it illustrates a new approach to creating self-assembled ensembles with emergent features.
Collapse
Affiliation(s)
- Yu-Dong Yang
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
| | - Xu-Lang Chen
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai Street, HaiDian District, Beijing 100875, P. R. China
| |
Collapse
|
14
|
Kurosaki R, Matsuo K, Hayashi H, Yamada H, Aratani N. A Directly-linked Cyclic Pyrene Tetramer as a Back-to-back Receptor for Two Fullerenes. CHEM LETT 2020. [DOI: 10.1246/cl.200233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ryo Kurosaki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Kyohei Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hironobu Hayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Naoki Aratani
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
15
|
Time-dependent solid-state molecular motion and colour tuning of host-guest systems by organic solvents. Nat Commun 2020; 11:77. [PMID: 31911631 PMCID: PMC6946670 DOI: 10.1038/s41467-019-13844-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
Host-guest complex solid state molecular motion is a critical but underexplored phenomenon. In principle, it can be used to control molecular machines that function in the solid state. Here we describe a solid state system that operates on the basis of complexation between an all-hydrocarbon macrocycle, D4d-CDMB-8, and perylene. Molecular motion in this solid state machine is induced by exposure to organic solvents or grinding and gives rise to different co-crystalline, mixed crystalline, or amorphous forms. Distinct time-dependent emissive responses are seen for different organic solvents as their respective vapours or when the solid forms are subject to grinding. This temporal feature allows the present D4d-CDMB-8⊃perylene-based system to be used as a time-dependent, colour-based 4th dimension response element in pattern-based information codes. This work highlights how dynamic control over solid-state host-guest molecular motion may be used to induce a tuneable temporal response and provide materials with information storage capability. Host-guest solid state molecular motion is a critical but underexplored phenomenon which can be used to control molecular machines that function in the solid state. Here, the authors describe a solid state machine that shows solvent vapour- and mechanically-induced molecular motion that allows access to different crystalline and amorphous forms.
Collapse
|
16
|
Ergun Dönmez M, Grennberg H. Analytical and preparative separation and isolation of functionalized fullerenes by conventional HPLC stationary phases: method development and column screening. RSC Adv 2020; 10:19211-19218. [PMID: 35515448 PMCID: PMC9054065 DOI: 10.1039/d0ra02814b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/08/2020] [Indexed: 01/21/2023] Open
Abstract
Isolation and purification of functionalized fullerenes from often complex reaction mixtures is challenging due to the hydrophobic nature and low solubility in regular organic solvents. We have developed an HPLC method that efficiently, employing regular reversed phase stationary phases, separates not only C60 from C70 in a model mixture, but also C60 monoadducts from polyadducts and unreacted C60 from fulleropyrrolidine and hydroarylation example reaction mixtures. Six HPLC columns with regular reversed phase stationary phases were evaluated using varying proportions of acetonitrile in toluene as eluent; with C18 and C12 stationary phases with high surface area (450–400 m2 g−1) being the most efficient regarding separation efficiency and analysis time for all mixtures. The analytical method is effectively transferrable to a preparative scale to isolate the monoaddition products from complex fullerene reaction mixtures. Isolation and purification of functionalized fullerenes from often complex reaction mixtures is challenging. Here, a simple and efficient HPLC method is presented.![]()
Collapse
Affiliation(s)
| | - Helena Grennberg
- Uppsala University
- Department of Chemistry – BMC
- 75123 Uppsala
- Sweden
| |
Collapse
|