1
|
Mou Y, Han L, Yin Y, Liu J, Xu Y, Tian Y, Wu Y, Chen D, Guo Y, Sun X, Li F. A Cu 2O/hemin-GO nanozyme with aptamer-enhanced peroxidase-mimic activity for colorimetric detection of kanamycin in milk. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40421651 DOI: 10.1039/d5ay00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Kanamycin (KAN) is an aminoglycoside antibiotic employed for the treatment of bacterial infections in livestock and poultry and is widely used as a veterinary drug in animal husbandry. Its overuse poses serious threats to public health and ecosystems; while traditional detection methods cannot meet the requirements of widespread application and rapid detection, developing rapid and reliable technology for KAN detection is essential. In this study, a colorimetric aptasensor was developed to rapidly detect KAN residues, leveraging the enhanced catalytic effect of aptamers on the peroxidase-like activity of the Cu2O/hemin-graphene oxide (Cu2O/hemin-GO) nanozyme. In the presence of hydrogen peroxide, the Cu2O/hemin-GO nanozyme demonstrated excellent peroxidase-like catalytic activity, oxidizing 3,3',5,5'-tetramethylbenzidine (TMB). The adsorption of aptamers on the nanozyme surface increased the negative charge density and significantly enhanced the affinity of the nanozyme for the positively charged chromogenic substrate TMB, boosting the catalytic activity nearly threefold. Upon exposure to KAN, the specific binding of aptamers to KAN reduced their adsorption on the Cu2O/hemin-GO nanozyme, leading to a decrease in the peroxidase-like activity of the Cu2O/hemin-GO nanozyme and a corresponding reduction in color change. The aptasensor exhibited excellent sensitivity with a linear detection range from 0.1 pM to 1 μM and a detection limit of 16 fM. The recovery rates for KAN in milk samples ranged from 92.05% to 110.71%. Furthermore, the colorimetric aptasensor demonstrated high selectivity and reproducibility. Overall, the colorimetric approach achieved the economical, simple and sensitive detection of KAN residues, indicating its promising potential in real-world applications. In addition, this sensing method could be applied to other targets by replacing the aptamer, providing a strategy for developing sensors facilitating rapid detection.
Collapse
Affiliation(s)
- Yaoting Mou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, Shandong, China.
| | - Lu Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, Shandong, China.
| | - Yanhao Yin
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, Shandong, China.
| | - Jianghua Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, Shandong, China.
| | - Yanqing Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, Shandong, China.
| | - Yuhang Tian
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, Shandong, China.
| | - Yanfang Wu
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Dongfei Chen
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, Shandong, China.
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, Shandong, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, Shandong, China.
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, Shandong, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun West Road, Zibo 255049, Shandong, China.
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, Shandong, China
| |
Collapse
|
2
|
Rabiee N, Rabiee M. Wearable Aptasensors. Anal Chem 2024; 96:19160-19182. [PMID: 39604058 DOI: 10.1021/acs.analchem.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
This Perspective explores the revolutionary advances in wearable aptasensor (WA) technology, which combines wearable devices and aptamer-based detection systems for personalized, real-time health monitoring. The devices leverage the specificity and sensitivity of aptamers to target specific molecules, offering broad applications from continuous glucose tracking to early diagnosis of diseases. The integration of data analytics and artificial intelligence (AI) allows early risk prediction and guides preventive health measures. While challenges in miniaturization, power efficiency, and data security persist, these devices hold significant potential to democratize healthcare and reshape patient-doctor interactions.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|
3
|
Peng Y, Wu M, Liu M, Wu Y. An all-in-one enzyme-free fluorescent aptasensor integrating localized catalyzed hairpin assembly for sensing antibiotics in food with improved detection efficiency. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7816-7822. [PMID: 39429163 DOI: 10.1039/d4ay01526f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Enzyme-free signal amplification fluorescent aptasensors depending on multi-component freely diffusing probes have become indispensable tools for antibiotic detection in food, but they suffer from low detection efficiency and tedious operation steps. Herein, an all-in-one enzyme-free fluorescent aptasensor integrating localized catalyzed hairpin assembly (L-CHA) was designed for antibiotic detection with improved detection efficiency. In the designed aptasensor, a double-stranded DNA reactant containing an antibiotic aptamer and a primer as well as two paired hairpin DNA reactants were immobilized on one spatial-confinement DNA scaffold (that is a DNA tetrahedron). Upon addition of the target antibiotic kanamycin, the activated primer initiated L-CHA, generating an amplified fluorescence signal. Compared with previously reported enzyme-free signal amplification fluorescent aptasensors, the designed aptasensor integrated the functions of target recognition, signal transduction, and L-CHA signal amplification into a single probe. In this all-in-one design, the reactants in this aptasensor were confined to a compact space for a higher local concentration, which improved detection efficiency. In particular, this aptasensor achieved sensitive detection of kanamycin within 60 min with a low detection limit of 0.019 ng mL-1. Additionally, the designed aptasensor depended on a single probe rather than multi-component probes, leading to simplified operation steps. Furthermore, this aptasensor was employed for detecting kanamycin in spiked milk samples with recoveries of 96.00% to 108.60%, indicating an acceptable accuracy. Therefore, this L-CHA-based all-in-one enzyme-free fluorescent aptasensor offers a prospective tool for antibiotic detection in the field of food safety.
Collapse
Affiliation(s)
- Yuanyuan Peng
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252000, China.
| | - Min Wu
- Department of Public Health, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252000, China.
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
4
|
Liu Y, Zhou Y, Xu W, Li J, Wang S, Shen X, Wen X, Liu L. Aptamer-based kinetically controlled DNA reactions coupled with metal-organic framework nanoprobes for sensitive detection of SARS-CoV-2 spike protein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6583-6589. [PMID: 38014562 DOI: 10.1039/d3ay01585h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Since the outbreak in 2019, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become the deadliest infectious disease worldwide for people of all ages, from children to older adults. As a main structural protein of SARS-CoV-2, spike protein is reported to play a key role in the entry of the virus into host cells and is considered as an effective antigenic marker for COVID-19 diagnosis. Herein, we develop a new aptamer-based fluorescence method for SARS-CoV-2 spike protein detection based on using kinetically controlled DNA reactions and metal-organic framework nanoprobes. Specifically, the binding of SARS-CoV-2 spike protein to its aptamer is designed to precisely control the kinetics of a DNA displacement reaction, leading to the release of free signaling probes. By reasonable integration of magnetic enrichment and exonuclease-fuelled recycling, the released probes efficiently disrupt the interaction within metal-organic framework nanoprobes, thereby generating a remarkable fluorescent response. Experimental results show that the method not only exhibits a wide linear range and a low detection limit of 7.8 fg mL-1 for SARS-CoV-2 spike protein detection but also demonstrates desirable specificity and utility in complex samples. Therefore, the method may provide a valuable tool for the detection of SARS-CoV-2 spike protein, and has bright prospects in the rapid diagnosis of COVID-19, which is of great significance for guiding rational treatment during a pandemic of respiratory infectious diseases and reducing the occurrence of severe disease in children.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pediatrics, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China.
| | - Yuanlin Zhou
- Department of Pediatrics, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China.
| | - Wanting Xu
- Department of Pediatrics, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China.
| | - Jiarong Li
- College of Clinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shuning Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaojia Shen
- Department of Pediatrics, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China.
| | - Xiaobin Wen
- Department of Pediatrics, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China.
| | - Li Liu
- Department of Pediatrics, Chengdu Second People's Hospital, Chengdu 610021, Sichuan, China.
| |
Collapse
|
5
|
Chen J, Shi G, Yan C. Portable biosensor for on-site detection of kanamycin in water samples based on CRISPR-Cas12a and an off-the-shelf glucometer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162279. [PMID: 36801336 DOI: 10.1016/j.scitotenv.2023.162279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
On-site and cost-effective monitoring of antibiotic residue in water samples using a ubiquitous device that is readily available to the general public is a big challenge. Herein, we developed a portable biosensor for kanamycin (KAN) detection based on a glucometer and CRISPR-Cas12a. The aptamer-KAN interactions liberate the trigger C strand, which can initiate the hairpin assembly to produce numerous double-stranded DNA. After recognition by CRISPR-Cas12a, Cas12a can cleave the magnetic bead and invertase-modified single-stranded DNA. After magnetic separation, the invertase can convert sucrose into glucose, which can be quantified by a glucometer. The linear range of the glucometer biosensor is from 1 pM to 100 nM and the detection limit is 1 pM. The biosensor also exhibited high selectivity and the nontarget antibiotics had no significant interference with KAN detection. The sensing system is robust and can work in complex samples with excellent accuracy and reliability. The recovery values were in the range of 89-107.2 % for water samples and 86-106.5 % for milk samples. The relative standard deviation (RSD) was below 5 %. With the advantages of simple operation, low cost, and easy accessibility to the public, this portable pocket-sized sensor can realize the on-site detection of antibiotic residue in resource-limited settings.
Collapse
Affiliation(s)
- Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Gu Shi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chong Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
6
|
Li Y, Si Q, Liu C, Huang Z, Chen Q, Jiao T, Chen X, Chen Q, Wei J. Construction of a self-sufficient DNA circuit for amplified detection of kanamycin. Food Chem 2023; 418:136048. [PMID: 36996659 DOI: 10.1016/j.foodchem.2023.136048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
Improper use of kanamycin can lead to trace kanamycin residues in animal-derived foods, which can pose a potential threat to public health. Isothermal enzyme-free DNA circuits have provided a versatile toolbox for detecting kanamycin residues in complicated food samples, yet they are always limited by low amplification efficiency and intricate design. Herein, we present a simple-yet-robust nonenzymatic self-driven hybridization chain reaction (SHCR) amplifier for kanamycin determination with 5800-fold sensitivity over that of the conventional HCR circuit. The analyte kanamycin-activated SHCR circuitry can generate numerous new initiators to promote the reaction and improve the amplification efficiency, thus achieving an exponential signal gain. With precise target recognition and multilayer amplification capability, our self-sustainable SHCR aptasensor facilitated the highly sensitive and reliable analysis of kanamycin in buffer, milk, and honey samples, thus holding great potential for the amplified detection of trace contaminants in liquid food matrices.
Collapse
|
7
|
Liu Y, Guan B, Xu Z, Wu Y, Wang Y, Ning G. A fluorescent assay for sensitive detection of kanamycin by split aptamers and DNA-based copper/silver nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121953. [PMID: 36242838 DOI: 10.1016/j.saa.2022.121953] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Kanamycin was a group of essential antibiotics generally served in treating infections of animals which leached into the environment residual in food, causing health concerns. Thus, selective and sensitive monitoring of kanamycin was significant for food safety. In this work, split aptamers were used as templates to prepare fluorescent Cu/Ag NCs for detection of kanamycin. According to the impressive affinity of the aptamer to kanamycin, two different detection modes were designed using kanamycin aptamer as a recognition molecule, in which one was to combine split aptamer Apt-1 with Apt-2 to form an entangled DNA as a Cu/Ag NCs template, the other was to associate the normal aptamer after encirclement to form Cu/Ag NCs templates. After the addition of kanamycin, the fluorescence signals of the Cu/Ag NCs synthesized in the two modes were both enhanced, but the approach with split aptamer exhibited a superior observable sensitivity than that of the normal type. The detection range showed a well linear relationship between 80 nM and 10 μM when the emission wavelength was 560 nm, and the detection limit was 13.3 nM. In addition, when streptomycin, oxytetracycline, chloramphenicol and chlortetracycline were involved in the selective interference experiment under the same conditions, the fluorescence intensity of the system performed no significant changes. The results demonstrated that this method possessed favorable specificity and selectivity for the assay of kanamycin, proficiently achieving efficient, rapid and sensitive evaluation of kanamycin in the milk samples.
Collapse
Affiliation(s)
- Yan Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004 Changsha, China; School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Baibing Guan
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004 Changsha, China
| | - Ziqi Xu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004 Changsha, China
| | - Yaohui Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004 Changsha, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, 410004 Changsha, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, 410208 Changsha, China.
| |
Collapse
|
8
|
Pan J, Deng F, Zeng L, Liu Z, Chen J. Target-mediated competitive hybridization of hairpin probes for kanamycin detection based on exonuclease III cleavage and DNAzyme catalysis. Anal Bioanal Chem 2022; 414:8255-8261. [PMID: 36178489 DOI: 10.1007/s00216-022-04354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Based on aptamer recognition and target-mediated competitive hybridization of hairpin probes, we developed a fluorescence sensor for kanamycin (KAN) detection. The aptamer and KAN binding will open hairpin H1 to release the trigger DNA fragment, which can initiate the competitive hybridization between hairpins H2 and H3. Then, exonuclease III (Exo III) can cleave H2 and H3 to produce numerous DNA3 and DNA4. Through the synergetic hybridization among DNA1, DNA2, DNA3, and DNA4, an active Mg2+-DNAzyme can be formed. The cleavage reaction toward FAM-BHQ-modified DNA2 will produce a high fluorescence signal for KAN assay. Through Exo III-guided cleavage and Mg2+-DNAzyme-based catalysis, the sensor exhibits high sensitivity, with a detection limit of 3.1 fM. This method is robust and has been applied to the detection of KAN in milk and water samples with good accuracy and reliability. Our developed fluorescence sensor exhibits the advantages of simple operation, high sensitivity, and good robustness, which are beneficial for KAN detection in food samples.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Lingwen Zeng
- Guangdong Langyuan Biotechnology Co., LTD, Foshan, 528313, China
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
9
|
Li G, Liu S, Huo Y, Zhou H, Li S, Lin X, Kang W, Li S, Gao Z. “Three-in-one” nanohybrids as synergistic nanozymes assisted with exonuclease I amplification to enhance colorimetric aptasensor for ultrasensitive detection of kanamycin. Anal Chim Acta 2022; 1222:340178. [DOI: 10.1016/j.aca.2022.340178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/01/2022]
|
10
|
Wang X, Yang J, Xie Y, Lai G. Dual DNAzyme-catalytic assembly of G-quadruplexes for inducing the aggregation of gold nanoparticles and developing a novel antibiotic assay method. Mikrochim Acta 2022; 189:262. [PMID: 35727378 DOI: 10.1007/s00604-022-05362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
By utilizing a target biorecognition reaction to induce the self-assembly of G-quadruplexes and the aggregation of gold nanoparticles (Au NPs), this work develops a novel colorimetric biosensing method for kanamycin (Kana) antibiotic detection. The compact G-quadruplex structure was assembled from its two half-split sequences which were designed in two hairpin substrates of the Mg2+-dependent DNAzyme (MNAzyme). Besides hybridizing with the aptamer strand, the MNAzyme sequence was also split into two half fragments to be designed in the two substrates. Upon the aptamer-recognition reaction toward Kana, the MNAzyme strand could be quantitatively released to cause the exposure of the split G-quadruplex-sequences on two hairpin substrate-modified Au NPs and simultaneous release of two half fragments of the MNAzyme-sequence. Thus, the K+-assisted self-folding of G-quadruplexes causes the cross-linking of the two Au NPs to realize the Au NP aggregation-based colorimetric signal output (measured at the largest absorption peak near 520 nm). Meanwhile, the self-assembled formation of the second MNAzyme drastically amplified the signal response. Under the optimal conditions, a wide linear range from 0.1 pg mL-1 to 10 ng mL-1 and an ultrahigh sensitivity with the detection limit of 76 fg mL-1 were obtained. The dose-recovery experiments in real samples showed satisfactory results with recoveries from 98.4 to 105.4% and relative errors compared with the ELISA method less than 4.1%. Due to the high selectivity, excellent repeatability and stability, and simple manipulation, this method indicates a promising potential for practical applications. A novel homogeneous biosensing method was developed for the convenient detection of the kanamycin antibiotic. The target biorecognition-induced and dual DNAzyme-catalytic assembly of G-quadruplexes enabled the amplified aggregation of gold nanoparticles for the simple, cheap, stable, and ultrasensitive colorimetric signal transduction of the method.
Collapse
Affiliation(s)
- Xiaojun Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Jingru Yang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
11
|
Wang X, Xuan T, Huang W, Li X, Lai G. Endonuclease-driven DNA walking for constructing a novel colorimetric and electrochemical dual-mode biosensing method. Anal Chim Acta 2022; 1208:339835. [DOI: 10.1016/j.aca.2022.339835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022]
|
12
|
Wang H, Xie Y, Wang Y, Lai G. Target biorecognition-triggered assembly of a G-quadruplex DNAzyme-decorated nanotree for the convenient and ultrasensitive detection of antibiotic residues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152629. [PMID: 34963603 DOI: 10.1016/j.scitotenv.2021.152629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
The abuse of kanamycin (Kana) in many fields has led to increasing antibiotic pollution problems and serious threats to public health. Therefore, determining how to develop methods to realize the convenient detection of antibiotics in complicated environmental matrices is highly desirable. In this study, we utilized a target biorecognition-triggered hybridization chain reaction (HCR) assembly of a G-quadruplex DNAzyme (G-DNAzyme)-decorated nanotree to develop a novel homogeneous colorimetric biosensing method for the convenient and ultrasensitive detection of Kana antibiotic residues in real samples. Through the designed aptamer-recognition reaction, an Mg2+-dependent DNAzyme (MNAzyme) strand can be liberated. Thus, its catalyzed cleavage of the hairpin substrates anchored at a DNA nanowire will cause the assembled formation of an HCR-initiator; this process can be greatly amplified by the exonuclease III-assisted target recycling and the MNAzyme-catalyzed release of another MNAzyme strand. Based on the DNA-nanowire-accelerated HCR assembly of many G-DNAzyme-decorated DNA duplexes on the two sides of the nanowire, a DNA nanotree decorated by numerous G-DNAzymes will form to realize the ultrasensitive colorimetric signal output. Under the optimal conditions, this method exhibited a wide five-order-of-magnitude linear range and a very low detection limit of 28 fg mL-1. In addition, excellent selectivity, repeatability, and reliability were also demonstrated for this homogeneous bioassay method. These unique features along with its automatic manipulation and low assay cost show promise for practical applications.
Collapse
Affiliation(s)
- Haiyan Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yujia Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
13
|
A label-free and enzyme-free fluorescent aptasensor for amplified detection of kanamycin in milk sample based on target-triggered catalytic hairpin assembly. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108654] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Huang W, Zhan D, Xie Y, Li X, Lai G. Dual CHA-mediated high-efficient formation of a tripedal DNA walker for constructing a novel proteinase-free dual-mode biosensing strategy. Biosens Bioelectron 2022; 197:113708. [PMID: 34763154 DOI: 10.1016/j.bios.2021.113708] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
DNA walkers have been recognized as a type of powerful signal amplification tool for biosensors, but how to adopt a proper strategy to increase their amplification efficiency is still highly desirable. Herein we design a dual-catalytic hairpin assembly (CHA)-mediated strategy for the high-efficient formation of a tripedal Mg2+-dependent DNAzyme (MNAzyme)-DNA walker, and thus develop a novel proteinase-free dual-mode biosensing method for the kanamycin (Kana) antibiotic assay. The first CHA is initiated by a target-biorecognition reaction, which can produce the DNA walker and also induce the target recycling. The second CHA is initiated by a special base sequence designed as a one-half substrate of the MNAzyme. Upon the first CHA-triggered DNA walking at a magnetic bead (MB) track, this "pseudo-target" sequence can be released to induce another CHA-cycle for the formation of the same DNA walker. Meanwhile, the other one-half substrate strand exposed on the MB surface will trigger the quantitative hybridization chain reaction (HCR)-assembly of a G-quadruplex DNAzyme (G-DNAzyme)-enriched double-stranded DNA polymer. So the enzymatic reaction of G-DNAzymes enabled the convenient colorimetric and photoelectrochemical dual-mode signal transduction of the method. Due to the dual-CHA facilitation to the tripedal and three-dimensional DNA walking and synergetic signal amplification of HCR, this method exhibits very low detection limits of 9.4 and 0.55 fg mL-1, respectively. In combination with its wide linear range, automated manipulation, and excellent selectivity, repeatability and reliability, the proposed method is expected to be used for the convenient semiquantitative screening and accurate determination of possible antibiotic residues in complicated matrices.
Collapse
Affiliation(s)
- Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Danyan Zhan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
15
|
Zhao X, Yuan Y, Liu X, Mao F, Xu G, Liu Q. A Versatile Platform for Sensitive and Label-Free Identification of Biomarkers through an Exo-III-Assisted Cascade Signal Amplification Strategy. Anal Chem 2022; 94:2298-2304. [PMID: 35040308 DOI: 10.1021/acs.analchem.1c05012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of a versatile and sensitive analytical biomarker detection platform is important for both early diagnosis and treatment of diseases. In the present study, we propose a novel fluorescence-based, ultrasensitive, and label-free biomarker detection platform. This platform relies on a flexible probe design compatible for multiple biomarker identification and Exo-III enzyme-triggered cascade signal amplification. We have validated that this label-free platform exhibits high sensitivity and specificity. Indeed, this platform exhibited brilliant analytical performance in qualifying a carcinoembryonic antigen and small extracellular vesicles (sEVs). It also shows excellent capability in multiplexing mapping of surface proteins of various cancer-derived sEVs. Therefore, we believe that the proposed sensing platform has great potential for clinical diagnosis and anticancer drug development.
Collapse
Affiliation(s)
- Xianxian Zhao
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Ye Yuan
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Xiaoya Liu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fajiang Mao
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Ge Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qingzhong Liu
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| |
Collapse
|
16
|
Yin F, Cheng S, Liu S, Ma C, Wang L, Zhao R, Lin JM, Hu Q. A portable digital optical kanamycin sensor developed by surface-anchored liquid crystal droplets. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126601. [PMID: 34265652 DOI: 10.1016/j.jhazmat.2021.126601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
There is an increase in demand to develop simple, convenient, and low-cost approaches for rapid and label-free detection of antibiotics. Herein, we propose a new principle for the detection of kanamycin using the surface-anchored liquid crystal (LC) droplets. The optical images of the LC droplets uniformly change from four-clover, uniformly dark, and dark cross appearance gradually with the increase of surfactant concentration. The detection of kanamycin is fulfilled with the aid of a cationic surfactant cetyltrimethylammonium bromide (CTAB) and a kanamycin aptamer. The LC droplets show uniformly dark appearance and four-clover appearance in the presence of the aqueous solutions of CTAB and CTAB/aptamer complex, respectively. However, the specific binding of kanamycin to its aptamer can release the CTAB, which induces the uniformly dark appearance of the LC droplets. A portable device is built to measure the optical luminance of the LC droplets. This system can detect kanamycin with a concentration below 0.1 ng/mL (~0.17 nM) and also allows the detection of kanamycin in real samples such as milk and honey. Therefore, it is very promising in the development of new types of LC-based sensors by the surface-anchored LC droplets assisted with a portable optical device.
Collapse
Affiliation(s)
- Fangchao Yin
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Supan Cheng
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Shuya Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Chunxia Ma
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Li Wang
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Rusong Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China.
| |
Collapse
|
17
|
Xie Y, Wang H, Yuwen X, Lai G. Exo III-Catalyzed Release of a Zn 2+-Ligation DNAzyme to Drive the Strand Displacement Reaction and Gold Aggregation for the Homogeneous Bioassay of Kanamycin Antibiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10371-10378. [PMID: 34436884 DOI: 10.1021/acs.jafc.1c04030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we combine the exonuclease III (Exo III)-catalyzed release of a Zn2+-dependent ligation DNAzyme with the DNAzyme-driven strand displacement reaction (SDR) to develop a novel homogeneous colorimetric bioassay method for kanamycin (Kana) antibiotic detection. Upon the biorecognition reaction between Kana and a designed hairpin DNA, the DNAzyme-containing strand can be catalytically released by Exo III. Then, this DNAzyme will catalyze the ligation of two oligonucleotides to cause a SDR and the aggregation of gold nanoparticles (Au NPs) labeled by two linker DNA strands. Due to the aggregation of Au NPs for colorimetric signal transduction and the Exo III and SDR-assisted dual signal amplification, this method shows a wide linear range of 5 orders of magnitude and a very low detection limit down to 8.1 fg mL-1. Together with its excellent selectivity, repeatability, reliability, and convenient manipulation, the proposed method shows a great potential for the food quality monitoring application.
Collapse
Affiliation(s)
- Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Haiyan Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xinyue Yuwen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| |
Collapse
|
18
|
Tang Y, Huang X, Wang X, Wang C, Tao H, Wu Y. G-quadruplex DNAzyme as peroxidase mimetic in a colorimetric biosensor for ultrasensitive and selective detection of trace tetracyclines in foods. Food Chem 2021; 366:130560. [PMID: 34284183 DOI: 10.1016/j.foodchem.2021.130560] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
The colorimetric method can determine the initial results even by the naked eyes, but its main challenge for antibiotics detection in food at present is the relatively low sensitivity. Herein, an ultrasensitive colorimetric biosensor based on G-quadruplex DNAzyme was firstly proposed for the rapid detection of trace tetracycline antibiotics like tetracycline, oxytetracycline, chlortetracycline and doxycycline. DNAzyme composed of hemin and G-quadruplex has peroxidase-like activity, and tetracyclines can combine with hemin to form a stable complex and reduce catalytic activity, making the color of solution changes from yellow to green. The limits of detection (LOD) of the proposed colorimetric biosensor for tetracyclines is determined as low as 3.1 nM, which is lower than most of the other colorimetric methods for antibiotics detection. Moreover, the average recovery range of tetracyclines in actual samples is from 89% to 99%, indicating that such strategy may has bright application prospects for tetracyclines detection in foods.
Collapse
Affiliation(s)
- Yue Tang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiaohuan Huang
- Comprehensive Technology Center of Guiyang Customs District, Qianlingshan Road 268, Guanshanhu District, Guiyang 550081, China
| | - Xueli Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chunxiao Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Han Tao
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China..
| |
Collapse
|
19
|
Wang Y, Xia L, Xiang X, Yuan R, Wei S. A new photoelectrochemical biosensor based on FeOOH and exonuclease III-aided dual recycling signal amplification for HPV-16 detection. Chem Commun (Camb) 2021; 57:6416-6419. [PMID: 34095911 DOI: 10.1039/d1cc00756d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, based on iron oxyhydroxide (FeOOH) as the photoactive material and exonuclease III (exo III)-aided dual recycling signal amplification, a new photoelectrochemical (PEC) biosensor was successfully developed for human papillomavirus-16 (HPV-16) detection with a wide linear range from 0.5 fM to 1 nM and a low detection limit of 0.17 fM.
Collapse
Affiliation(s)
- Yanlin Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Lingying Xia
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Xuelian Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Shaping Wei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
20
|
Qin C, Hu C, Yu A, Lai G. Fe 3O 4@polydopamine and Exo III-assisted homogeneous biorecognition reaction for convenient and ultrasensitive detection of kanamycin antibiotic. Analyst 2021; 146:1414-1420. [PMID: 33404555 DOI: 10.1039/d0an02187c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Herein, we report a Fe3O4@polydopamine (PDA) nanocomposite and exonuclease III (Exo III)-assisted homogeneous fluorescence biosensing method for ultrasensitive detection of kanamycin (Kana) antibiotic. A hairpin DNA containing the Kana-aptamer sequence (HP) was first designed for the highly specific biorecognition of the target analyte. Because of the aptamer biorecognition-induced structural change of HP and the highly effective catalyzed reaction of Exo III, a large amount of fluorophore labels were released from the designed fluorescence DNA probe. During the homogeneous reaction process, the Exo III-assisted dual recycling significantly amplified the fluorescence signal output. Moreover, the excessive probes were easily adsorbed and separated by the Fe3O4@PDA nanocomposite, which decreased the background signal and increased the signal-to-noise ratio. These strategies result in the excellent analytical performance of the method, including a very low detection limit of 0.023 pg mL-1 and a very wide linear range of six orders of magnitude. In addition, this method has convenient operation, excellent selectivity, repeatability and satisfactory reliability, and does not involve the design and utilization of complicated DNA sequences. Thus, it exhibits a promising prospect for practical applications.
Collapse
Affiliation(s)
- Chuanying Qin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Cong Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
21
|
Huang Z, Li Z, Chen Y, Xu L, Xie Q, Deng H, Chen W, Peng H. Regulating Valence States of Gold Nanocluster as a New Strategy for the Ultrasensitive Electrochemiluminescence Detection of Kanamycin. Anal Chem 2021; 93:4635-4640. [PMID: 33661613 DOI: 10.1021/acs.analchem.1c00063] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monitoring of kanamycin residue has attracted considerable attention owing to the potential harm caused by the abuse of kanamycin. However, the detection of kanamycin has been limited owing to its electrochemical and optical inertness. Herein, we report a facile and highly efficient electrochemiluminescence (ECL) strategy for the detection of kanamycin based on the valence state effect of gold nanocluster (AuNC) probes. It is proven that Au0 in chemically reduced AuNCs (CR-AuNCs) could be oxidized to AuI via the redox reaction between kanamycin and CR-AuNCs in the presence of H2O2, resulting in ECL quenching due to the valence state change of CR-AuNCs. Because the ECL of the AuNC probes is sensitively affected by the valence state, excellent sensitivity for kanamycin was achieved without any signal amplification operation and aptamers. A preferable linear-dependent curve was acquired in the detection range from 1.0 × 10-11 to 3.3 × 10-5 M with an extremely low detection limit of 1.5 × 10-12 M. The proposed kanamycin sensing platform is very simple and shows high selectivity and an extremely broad linear range detection of kanamycin. Furthermore, the proposed sensing platform can detect kanamycin in milk samples with excellent recoveries. Therefore, this sensing strategy provides an effective and facile way to detect kanamycin and can help promote the understanding of the constructed mechanism of the AuNC-based ECL system, thus greatly broadening its potential application in ECL fields.
Collapse
Affiliation(s)
- Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Zhenglian Li
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Yao Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Luyao Xu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Qianlong Xie
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
22
|
Huang W, Zhou Y, Zhan D, Lai G. Homogeneous biorecognition reaction-induced assembly of DNA nanostructures for ultrasensitive electrochemical detection of kanamycin antibiotic. Anal Chim Acta 2021; 1154:338317. [PMID: 33736811 DOI: 10.1016/j.aca.2021.338317] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/16/2023]
Abstract
By the employment of a homogeneous biorecognition reaction to induce the assembled formation of DNA nanostructures at an electrode, herein we develop a novel biosensing method for the ultrasensitive electrochemical detection of kanamycin (Kana) antibiotic. A DNA complex consisting of Kana-aptamer and a hairpin DNA with an exposed 3'-end was first designed for conducting the homogeneous reaction with Kana in the presence of exonuclease I (Exo I). It resulted in the production of a hairpin DNA with a blunt terminus, which could be used for triggering the assembled formation of a layer of DNA nanostructures with orderly distribution and abundant biotin sites at a gold electrode. Then, high-content methylene blue and horseradish peroxidase (HRP)-functionalized gold nanotags would be captured onto the electrode to realize the electrocatalytic signal transduction. Due to the Exo I and HRP-assisted dual signal amplification, a very low detection limit of 9.1 fg mL-1 was obtained for the Kana assay along with a very wide linear range over five-order of magnitude. Considering the excellent performance of the method, it exhibits a promising prospect for practical applications.
Collapse
Affiliation(s)
- Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yue Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Danyan Zhan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
23
|
Pan J, He Y, Liu Z, Chen J. Dual recognition element-controlled logic DNA circuit for COVID-19 detection based on exonuclease III and DNAzyme. Chem Commun (Camb) 2021; 57:1125-1128. [PMID: 33410447 DOI: 10.1039/d0cc06799g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two fragments of the COVID-19 genome (specific and homologous) were used as two inputs to construct an AND logic gate for COVID-19 detection based on exonuclease III and DNAzyme. The detection sensitivity of the assay can reach fM levels. Satisfactory recovery values were obtained in real sample analysis.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying He
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
24
|
Label-free exonuclease I-assisted signal amplification colorimetric sensor for highly sensitive detection of kanamycin. Food Chem 2021; 347:128988. [PMID: 33465686 DOI: 10.1016/j.foodchem.2020.128988] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022]
Abstract
A label-free colorimetric method based on exonuclease I (Exo I)-assisted signal amplification with protamine as a medium was developed for analysis of kanamycin. In this study, a double-stranded DNA (dsDNA) probe was tailored by manipulating an aptamer and its complementary DNA (cDNA) ensuring detection of target with high selectivity and excellent sensitivity. Herein, protamine could not only combine with negatively charged gold nanoparticles but also interaction with polyanion DNA. Upon addition of target kanamycin, the target-aptamer complex was formed and the cDNA was released. Thus, both aptamer and cDNA could be digested by Exo I, and the captured kanamycin was liberated for triggering target recycling and signal amplification. Under optimized conditions, the proposed colorimetric method realized a low detection limit of 2.8 × 10-14 M along with a wide linear range plus excellent selectivity. Our strategy exhibited enormous potentials for fabricate various kinds of biosensors based on target-induced aptamer configuration changes.
Collapse
|
25
|
Zhou J, Li Y, Wang W, Lu Z, Han H, Liu J. Kanamycin Adsorption on Gold Nanoparticles Dominates Its Label-Free Colorimetric Sensing with Its Aptamer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11490-11498. [PMID: 32907335 DOI: 10.1021/acs.langmuir.0c01786] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A short kanamycin-binding aptamer has been widely used for detecting kanamycin. One of the popular signaling methods is based on the color change of gold nanoparticles (AuNPs) to develop label-free colorimetric biosensors. The general perception was that aptamer binding to its target would inhibit aptamer adsorption by the AuNPs. This inhibited adsorption results in the aggregation of the AuNPs and a color change upon addition of salt. However, the potential adsorption of kanamycin was ignored. Herein, we carefully studied the adsorption of kanamycin on AuNPs and performed a comprehensive analysis using two mutated aptamers and a randomly sequenced DNA which were not supposed to bind kanamycin. In addition, a total of six antibiotics were studied over a wide concentration range. As low as 90 nM kanamycin can induce the aggregation of 3 nM citrate-capped AuNPs, indicating very strong adsorption of kanamycin. The color change was independent of DNA sequence, and all the tested sequences showed a similar color response, regardless of aptamer. Among the different antibiotics, kanamycin and streptomycin induced a color change but not the other four. Our results support an alternative mechanism that kanamycin and streptomycin adsorption by the AuNPs was the main reason for the color change instead of aptamer binding.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
26
|
Abstract
Aminoglycosides (AGs) are broad-spectrum antibiotics used in both human infection and animal medicine. The overuse of AGs causes undesirable residues in food, leading to serious health problems due to food chain accumulation. In recent years, various methods have been developed to determine AGs in food. Among these methods, fluorescent (FL), colorimetric and chemiluminescent (CL) optical methods possess advantages such as their simple instrumentation, low cost, simple operation, feasibility of realizing visualization, and smartphone imaging. This mini-review summarizes optical assays for the detection of AGs in food developed in recent years. The detection principles for different categories are discussed. Then, the amplification techniques for the ultrasensitive detection of AGs are introduced. We also discuss multiplex methods for the simultaneous detection of AGs. Finally, the challenges and future prospects are discussed in the Conclusions and Perspectives section.
Collapse
|
27
|
Aptamer biorecognition-triggered hairpin switch and nicking enzyme assisted signal amplification for ultrasensitive colorimetric bioassay of kanamycin in milk. Food Chem 2020; 339:128059. [PMID: 33152864 DOI: 10.1016/j.foodchem.2020.128059] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 02/03/2023]
Abstract
A colorimetric aptasensing strategy for detection of kanamycin was designed based on aptamer biorecognition and signal amplification assisted by nicking enzyme. The aptamer of kanamycin was designed to be contained in the metastable state hairpin DNA. The target DNA as recycling DNA was located in the loop of hairpin DNA. The presence of kanamycin stimulates the continuous actions, including specific recognition of the aptamer to kanamycin, the hybridization between target DNA and signal probe, the cleavage function of nicking enzyme. The actions induced accumulation of numerous free short sequences modified by platinum nanoparticles (PtNPs), which can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 to produce a colorimetric response. The aptasensor exhibited good selectivity and sensitivity for kanamycin in milk with a detection limit as low as 0.2 pg·mL-1. In addition, the proposed assay is potentially to be extended for other antibiotics detection in foods by adapting the corresponding aptamer sequence.
Collapse
|
28
|
Electrochemical determination of sulfamethazine using a gold electrode modified with multi-walled carbon nanotubes, graphene oxide nanoribbons and branched aptamers. Mikrochim Acta 2020; 187:274. [DOI: 10.1007/s00604-020-04244-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
|
29
|
Highly efficient fluorescence sensing of kanamycin using Endo IV-powered DNA walker and hybridization chain reaction amplification. Mikrochim Acta 2020; 187:193. [PMID: 32124067 DOI: 10.1007/s00604-020-4167-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Abstract
An ultrasensitive fluorescence sensing strategy for kanamycin (KANA) determination using endonuclease IV (Endo IV)-powered DNA walker, and hybridization chain reaction (HCR) amplification was reported. The sensing system consists of Endo IV-powered 3D DNA walker using for the specific recognition of KANA and the formation of the initiators, two metastable hairpin probes as the substrates of HCR and a tetrahydrofuran abasic site (AP site)-embeded fluorescence-quenched probe for fluorescence signal output. On account of this skilled design of sensing system, the specific binding between KANA and its aptamer activates DNA walker, in which the swing arm can move autonomously along the 3D track via Endo IV-mediated hydrolysis of the anchorages, inducing the formation of initiators that initiates HCR and the following Endo IV-assisted cyclic cleavage of fluorescence reporter probes. The use of Endo IV offers the advantages of simplified and accessible design without the need of specific sequence in DNA substrates. Under the optimal experimental conditions, the fluorescence biosensor shows excellent sensitivity toward KANA detection with a detection limit as low as 1.01 pM (the excitation wavelength is 486 nm). The practical applicability of this strategy is demonstrated by detecting KANA in spiked milk samples with recovery in the range of 98 to 102%. Therefore, this reported strategy might create an accurate and robust fluorescence sensing platform for trace amounts of antibiotic residues determination and related safety analysis. Graphical abstract Highly efficient fluorescence sensing of kanamycin using Endo IV-powered DNA Walker and hybridization chain, reaction amplification, Xiaonan Qu, Jingfeng Wang, Rufeng Zhang, Yihan Zhao, Shasha Li, Yu Wang, Su Liu*, Jiadong Huang, and Jinghua Yu, an ultrasensitive fluorescence sensing strategy for kanamycin determination using endonuclease IV-powered DNA walker, and hybridization chain reaction amplification is reported.
Collapse
|
30
|
Three-way junction-promoted recycling amplification for sensitive DNA detection using highly bright DNA-silver nanocluster as label-free output. Talanta 2020; 206:120216. [DOI: 10.1016/j.talanta.2019.120216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
|
31
|
Wang L, Zhu F, Zhu Y, Xie S, Chen M, Xiong Y, Liu Q, Yang H, Chen X. Intelligent Platform for Simultaneous Detection of Multiple Aminoglycosides Based on a Ratiometric Paper-Based Device with Digital Fluorescence Detector Readout. ACS Sens 2019; 4:3283-3290. [PMID: 31736294 DOI: 10.1021/acssensors.9b01845] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A digital fluorescence detector (DFD), a handheld fluorescence detection device, can convert the fluorescence signal of samples into the corresponding fluorescer concentration. Herein, by adopting a DFD as the readout, a novel intelligent platform was developed based on a ratiometric paper-based device (RPD) for multiple aminoglycoside detection. There are five layers and four parallel channels contained in the designed RPD, functioning as reagent storage, fluidic path control and signal processing, respectively. The rationale of this design lies in the fact that aptamer/graphitic carbon nitride nanosheet (Apt/g-C3N4 NS) modified layers can catalyze o-phenylenediamine to fluorescent 2,3-diaminophenazine (DAP) in the presence of H2O2. When Apt was removed from nanosheets via the Apt-target reaction, the peroxidase-like activity would be decreased, thus decreasing the production of DAP. All the changes of the fluorescence DAP signal can be read out using a portable DFD. Based on the DFD signal change related to the concentration of the target, a quantitative reaction platform was established. Furthermore, the sample flow and Apt-target reaction time can be reasonably regulated using the H2O2-cleavable hydrophobic compound modified layer placed between the target recognition region and detection region. Then, the practicality of this platform was verified through realizing sensitive analysis of streptomycin, tobramycin, and kanamycin simultaneously. Overall, with merits including portability and ease of operation, the platform shows great potential in on-site simultaneous detection of multiple targets, especially in resource-limited settings.
Collapse
Affiliation(s)
- Lumin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Fawei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Siqi Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Miao Chen
- School of Life Science, Central South University, Changsha 410013, China
| | - Yu Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China
| |
Collapse
|
32
|
Xie Y, Niu F, Yu A, Lai G. Proximity Binding-Triggered Assembly of Two MNAzymes for Catalyzed Release of G-Quadruplex DNAzymes and an Ultrasensitive Homogeneous Bioassay of Platelet-Derived Growth Factor. Anal Chem 2019; 92:593-598. [DOI: 10.1021/acs.analchem.9b05002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, Hubei 435002, PR China
| | - Feina Niu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, Hubei 435002, PR China
| | - Aimin Yu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, Hubei 435002, PR China
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi, Hubei 435002, PR China
| |
Collapse
|