1
|
Nghe P. A stepwise emergence of evolution in the RNA world. FEBS Lett 2025. [PMID: 40353364 DOI: 10.1002/1873-3468.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/14/2025] [Accepted: 04/20/2025] [Indexed: 05/14/2025]
Abstract
Building on experimental evidence and replicator theories, I propose a 3-stage scenario for a transition from autocatalysis into template-based replication of RNA, providing a pathway for the origin of life. In stage 1, self-reproduction occurs via autocatalysis using oligomer substrates, replicator viability relies on substrate-specificity, and heritable variations are mediated by structural interactions. In stage 2, autocatalysis coexists with the templated ligation of external substrates. This dual mode of reproduction combined with limited diffusion avoids the error catastrophe. In stage 3, template-based replication takes over and uses substrates of decreasing size, made possible by enhanced catalytic properties and compartmentalization. Structural complexity, catalytic efficiency, metabolic efficiency, and cellularization all evolve gradually and interdependently, ultimately leading to evolutionary processes similar to extant biology. Impact statement This perspective proposes a testable stepwise scenario for the emergence of evolution in an RNA origin of life. It shows how evolution could appear in a gradual manner, thanks to catalytic feedback among random mixtures of molecules. It highlights possible couplings between the different facets of molecular self-organization, which could bootstrap life.
Collapse
Affiliation(s)
- Philippe Nghe
- Laboratoire Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, ESPCI - Paris Sciences Lettres University, France
| |
Collapse
|
2
|
Vörös D, Czárán T, Szilágyi A, Könnyű B. The dynamics of prebiotic take-off: the transfer of functional RNA communities from mineral surfaces to vesicles. Commun Biol 2025; 8:484. [PMID: 40122986 PMCID: PMC11930959 DOI: 10.1038/s42003-025-07841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
In this study, we propose a two-phase scenario for the origin of the first protocellular form of life, linking two RNA-world models by an explicit dynamical interface that simulates the transition of a metabolically cooperating RNA-replicator community from a mineral surface into a population of membrane vesicles. The two agent-based models: the Metabolically Coupled Replicator System (MCRS) and the Stochastic Corrector Model (SCM), are built on principles of systems chemistry, molecular biology, ecology and evolutionary biology. We show that the MCRS is easier to initiate from random RNA communities, while the SCM is more efficient at reducing the genetic assortment load during system growth and preadapted to later evolutionary transitions like chromosome formation, suggesting the former as a stepping stone to the later, protocellular stage. The switching between the two scenarios is shown to be dynamically feasible under a wide range of the parameter space of the merged model, allowing for the emergence of complex cooperative behaviours in metabolically coupled communities of RNA enzymes.
Collapse
Affiliation(s)
- Dániel Vörös
- HUN-REN Centre for Ecological Research, Institute of Evolution, Budapest, Hungary
- ELTE Eötvös Loránd University, Institute of Biology, Budapest, Hungary
- Parmenides Foundation, Pöcking, Germany
| | - Tamás Czárán
- HUN-REN Centre for Ecological Research, Institute of Evolution, Budapest, Hungary.
| | - András Szilágyi
- HUN-REN Centre for Ecological Research, Institute of Evolution, Budapest, Hungary
- Parmenides Foundation, Pöcking, Germany
| | - Balázs Könnyű
- HUN-REN Centre for Ecological Research, Institute of Evolution, Budapest, Hungary
- Parmenides Foundation, Pöcking, Germany
| |
Collapse
|
3
|
Lei C, Wang KY, Ma YX, Hao DX, Zhu YN, Wan QQ, Zhang JS, Tay FR, Mu Z, Niu LN. Biomimetic Self-Maturation Mineralization System for Enamel Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311659. [PMID: 38175183 DOI: 10.1002/adma.202311659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Enamel repair is crucial for restoring tooth function and halting dental caries. However, contemporary research often overlooks the retention of organic residues within the repair layer, which hinders the growth of dense crystals and compromises the properties of the repaired enamel. During the maturation of natural enamel, the organic matrix undergoes enzymatic processing to facilitate further crystal growth, resulting in a highly mineralized tissue. Inspired by this process, a biomimetic self-maturation mineralization system is developed, comprising ribonucleic acid-stabilized amorphous calcium phosphate (RNA-ACP) and ribonuclease (RNase). The RNA-ACP induces initial mineralization in the form of epitaxial crystal growth, while the RNase present in saliva automatically triggers a biomimetic self-maturation process. The mechanistic study further indicates that RNA degradation prompts conformational rearrangement of the RNA-ACP, effectively excluding the organic matter introduced earlier. This exclusion process promotes lateral crystal growth, resulting in the generation of denser enamel-like apatite crystals that are devoid of organic residues. This strategy of eliminating organic residues from enamel crystals enhances the mechanical and physiochemical properties of the repaired enamel. The present study introduces a conceptual biomimetic mineralization strategy for effective enamel repair in clinical practice and offers potential insights into the mechanisms of biomineral formation.
Collapse
Affiliation(s)
- Chen Lei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai-Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Xuan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dong-Xiao Hao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yi-Na Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qian-Qian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jiang-Shan Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Zhao Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
4
|
Matreux T, Aikkila P, Scheu B, Braun D, Mast CB. Heat flows enrich prebiotic building blocks and enhance their reactivity. Nature 2024; 628:110-116. [PMID: 38570715 PMCID: PMC10990939 DOI: 10.1038/s41586-024-07193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/09/2024] [Indexed: 04/05/2024]
Abstract
The emergence of biopolymer building blocks is a crucial step during the origins of life1-6. However, all known formation pathways rely on rare pure feedstocks and demand successive purification and mixing steps to suppress unwanted side reactions and enable high product yields. Here we show that heat flows through thin, crack-like geo-compartments could have provided a widely available yet selective mechanism that separates more than 50 prebiotically relevant building blocks from complex mixtures of amino acids, nucleobases, nucleotides, polyphosphates and 2-aminoazoles. Using measured thermophoretic properties7,8, we numerically model and experimentally prove the advantageous effect of geological networks of interconnected cracks9,10 that purify the previously mixed compounds, boosting their concentration ratios by up to three orders of magnitude. The importance for prebiotic chemistry is shown by the dimerization of glycine11,12, in which the selective purification of trimetaphosphate (TMP)13,14 increased reaction yields by five orders of magnitude. The observed effect is robust under various crack sizes, pH values, solvents and temperatures. Our results demonstrate how geologically driven non-equilibria could have explored highly parallelized reaction conditions to foster prebiotic chemistry.
Collapse
Affiliation(s)
- Thomas Matreux
- Systems Biophysics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paula Aikkila
- Systems Biophysics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bettina Scheu
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dieter Braun
- Systems Biophysics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christof B Mast
- Systems Biophysics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
5
|
Saha R, Kao WL, Malady B, Heng X, Chen IA. Effect of montmorillonite K10 clay on RNA structure and function. Biophys J 2024; 123:451-463. [PMID: 37924206 PMCID: PMC10912936 DOI: 10.1016/j.bpj.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/29/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
One of the earliest living systems was likely based on RNA ("the RNA world"). Mineral surfaces have been postulated to be an important environment for the prebiotic chemistry of RNA. In addition to adsorbing RNA and thus potentially reducing the chance of parasitic takeover through limited diffusion, minerals have been shown to promote a range of processes related to the emergence of life, including RNA polymerization, peptide bond formation, and self-assembly of vesicles. In addition, self-cleaving ribozymes have been shown to retain activity when adsorbed to the clay mineral montmorillonite. However, simulation studies suggest that adsorption to minerals is likely to interfere with RNA folding and, thus, function. To further evaluate the plausibility of a mineral-adsorbed RNA world, here we studied the effect of the synthetic clay montmorillonite K10 on the malachite green RNA aptamer, including binding of the clay to malachite green and RNA, as well as on the formation of secondary structures in model RNA and DNA oligonucleotides. We evaluated the fluorescence of the aptamer complex, adsorption to the mineral, melting curves, Förster resonance energy transfer interactions, and 1H-NMR signals to study the folding and functionality of these nucleic acids. Our results indicate that while some base pairings are unperturbed, the overall folding and binding of the malachite green aptamer are substantially disrupted by montmorillonite. These findings suggest that minerals would constrain the structures, and possibly the functions, available to an adsorbed RNA world.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | - Wei-Ling Kao
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Brandon Malady
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, Missouri
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, California; Department of Chemistry and Biochemistry, University of California, Santa Barbara, California.
| |
Collapse
|
6
|
Mizuuchi R. Constraint on an RNA world on montmorillonite clay. Biophys J 2024; 123:421-423. [PMID: 38263691 PMCID: PMC10912893 DOI: 10.1016/j.bpj.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Affiliation(s)
- Ryo Mizuuchi
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan; JST, FOREST, Kawaguchi, Saitama, Japan.
| |
Collapse
|
7
|
Zorc SA, Roy RN. Origin & influence of autocatalytic reaction networks at the advent of the RNA world. RNA Biol 2024; 21:78-92. [PMID: 39358873 PMCID: PMC11451275 DOI: 10.1080/15476286.2024.2405757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Research on the origin of life investigates the transition from abiotic chemistry to the emergence of biology, with the 'RNA world hypothesis' as the leading theory. RNA's dual role in storage and catalysis suggests its importance in this narrative. The discovery of natural ribozymes emphasizes RNA's catalytic capabilities in prebiotic environments, supporting the plausibility of an RNA world and prompting exploration of precellular evolution. Collective autocatalytic sets (CASs) mark a crucial milestone in this transition, fostering complexity through autocatalysis. While modern biology emphasizes sequence-specific polymerases, remnants of CASs persist in primary metabolism highlighting their significance. Autocatalysis, driven by CASs, promotes complexity through mutually interdependent catalytic sets. Yet, the transition from ribonucleotides to complex RNA oligomers remains puzzling. Questions persist about the genesis of the first self-replicating RNA molecule, RNA's stability in prebiotic conditions, and the shift to complex molecular reproduction. This review delves into diverse facets of the RNA world's emergence, addressing critical bottlenecks and scientific advances. Integrating insights from simulation and in vitro evolution research, we illuminate the multistep biogenesis of catalytic RNA from the abiotic world. Through this exploration, we aim to elucidate the journey from the primordial soup to the dawn of life, emphasizing the interplay between chemistry and biology in understanding life's origins.
Collapse
Affiliation(s)
- Stephen A. Zorc
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Raktim N. Roy
- Department of pathology and laboratory medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Helmbrecht V, Weingart M, Klein F, Braun D, Orsi WD. White and green rust chimneys accumulate RNA in a ferruginous chemical garden. GEOBIOLOGY 2023; 21:758-769. [PMID: 37615250 DOI: 10.1111/gbi.12572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Mechanisms of nucleic acid accumulation were likely critical to life's emergence in the ferruginous oceans of the early Earth. How exactly prebiotic geological settings accumulated nucleic acids from dilute aqueous solutions, is poorly understood. As a possible solution to this concentration problem, we simulated the conditions of prebiotic low-temperature alkaline hydrothermal vents in co-precipitation experiments to investigate the potential of ferruginous chemical gardens to accumulate nucleic acids via sorption. The injection of an alkaline solution into an artificial ferruginous solution under anoxic conditions (O2 < 0.01% of present atmospheric levels) and at ambient temperatures, caused the precipitation of amakinite ("white rust"), which quickly converted to chloride-containing fougerite ("green rust"). RNA was only extractable from the ferruginous solution in the presence of a phosphate buffer, suggesting RNA in solution was bound to Fe2+ ions. During chimney formation, this iron-bound RNA rapidly accumulated in the white and green rust chimney structure from the surrounding ferruginous solution at the fastest rates in the initial white rust phase and correspondingly slower rates in the following green rust phase. This represents a new mechanism for nucleic acid accumulation in the ferruginous oceans of the early Earth, in addition to wet-dry cycles and may have helped to concentrate RNA in a dilute prebiotic ocean.
Collapse
Affiliation(s)
- Vanessa Helmbrecht
- Department for Geo- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Maximilian Weingart
- Systems Biophysics, Faculty of Physics, Ludwig-Maximilians-Universität, Munich, Germany
| | - Frieder Klein
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Dieter Braun
- Systems Biophysics, Faculty of Physics, Ludwig-Maximilians-Universität, Munich, Germany
| | - William D Orsi
- Department for Geo- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
9
|
Bartolucci G, Calaça Serrão A, Schwintek P, Kühnlein A, Rana Y, Janto P, Hofer D, Mast CB, Braun D, Weber CA. Sequence self-selection by cyclic phase separation. Proc Natl Acad Sci U S A 2023; 120:e2218876120. [PMID: 37847736 PMCID: PMC10614837 DOI: 10.1073/pnas.2218876120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
The emergence of functional oligonucleotides on early Earth required a molecular selection mechanism to screen for specific sequences with prebiotic functions. Cyclic processes such as daily temperature oscillations were ubiquitous in this environment and could trigger oligonucleotide phase separation. Here, we propose sequence selection based on phase separation cycles realized through sedimentation in a system subjected to the feeding of oligonucleotides. Using theory and experiments with DNA, we show sequence-specific enrichment in the sedimented dense phase, in particular of short 22-mer DNA sequences. The underlying mechanism selects for complementarity, as it enriches sequences that tightly interact in the dense phase through base-pairing. Our mechanism also enables initially weakly biased pools to enhance their sequence bias or to replace the previously most abundant sequences as the cycles progress. Our findings provide an example of a selection mechanism that may have eased screening for auto-catalytic self-replicating oligonucleotides.
Collapse
Affiliation(s)
- Giacomo Bartolucci
- Division Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden01187, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Adriana Calaça Serrão
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Philipp Schwintek
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Alexandra Kühnlein
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Yash Rana
- Division Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden01187, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Philipp Janto
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Dorothea Hofer
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Christof B. Mast
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Dieter Braun
- Ludwigs-Maximilian-Universität München and Center for NanoScience, Munich80799, Germany
| | - Christoph A. Weber
- Faculty of Mathematics, Natural Sciences, and Materials Engineering: Institute of Physics, University of Augsburg, Augsburg86159, Germany
| |
Collapse
|
10
|
Meyer MO, Yamagami R, Choi S, Keating CD, Bevilacqua PC. RNA folding studies inside peptide-rich droplets reveal roles of modified nucleosides at the origin of life. SCIENCE ADVANCES 2023; 9:eadh5152. [PMID: 37729412 PMCID: PMC10511188 DOI: 10.1126/sciadv.adh5152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
Compartmentalization of RNA in biopolymer-rich membraneless organelles is now understood to be pervasive and critical for the function of extant biology and has been proposed as a prebiotically plausible way to accumulate RNA. However, compartment-RNA interactions that drive encapsulation have the potential to influence RNA structure and function in compartment- and RNA sequence-dependent ways. Here, we detail next-generation sequencing (NGS) experiments performed in membraneless compartments called complex coacervates to characterize the fold of many different transfer RNAs (tRNAs) simultaneously under the potentially denaturing conditions of these compartments. Notably, we find that natural modifications favor the native fold of tRNAs in these compartments. This suggests that covalent RNA modifications could have played a critical role in metabolic processes at the origin of life.
Collapse
Affiliation(s)
- McCauley O. Meyer
- Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ryota Yamagami
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Saehyun Choi
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christine D. Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C. Bevilacqua
- Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Riggi VS, Watson EB, Steele A, Rogers KL. Mineral-Mediated Oligoribonucleotide Condensation: Broadening the Scope of Prebiotic Possibilities on the Early Earth. Life (Basel) 2023; 13:1899. [PMID: 37763303 PMCID: PMC10532843 DOI: 10.3390/life13091899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The origin of life on earth requires the synthesis of protobiopolymers in realistic geologic environments along strictly abiotic pathways that rely on inorganic phases (such as minerals) instead of cellular machinery to promote condensation. One such class of polymer central to biochemistry is the polynucleotides, and oligomerization of activated ribonucleotides has been widely studied. Nonetheless, the range of laboratory conditions tested to date is limited and the impact of realistic early Earth conditions on condensation reactions remains unexplored. Here, we investigate the potential for a variety of minerals to enhance oligomerization using ribonucleotide monomers as one example to model condensation under plausible planetary conditions. The results show that several minerals differing in both structure and composition enhance oligomerization. Sulfide minerals yielded oligomers of comparable lengths to those formed in the presence of clays, with galena being the most effective, yielding oligonucleotides up to six bases long. Montmorillonite continues to excel beyond other clays. Chemical pretreatment of the clay was not required, though maximum oligomer lengths decreased from ~11 to 6 bases. These results demonstrate the diversity of mineral phases that can impact condensation reactions and highlight the need for greater consideration of environmental context when assessing prebiotic synthesis and the origin of life.
Collapse
Affiliation(s)
- Vincent S. Riggi
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - E. Bruce Watson
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Andrew Steele
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Earth and Planets Laboratory, Carnegie Institution for Science, 5251 Broad Branch Rd NW, Washington, DC 20015, USA
| | - Karyn L. Rogers
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (E.B.W.); (A.S.); (K.L.R.)
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
12
|
Meyer MO, Yamagami R, Choi S, Keating CD, Bevilacqua PC. RNA folding studies inside peptide-rich droplets reveal roles of modified nucleosides at the origin of life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530264. [PMID: 36909509 PMCID: PMC10002651 DOI: 10.1101/2023.02.27.530264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Compartmentalization of RNA in biopolymer-rich membraneless organelles is now understood to be pervasive and critical for the function of extant biology and has been proposed as a prebiotically-plausible way to accumulate RNA. However, compartment-RNA interactions that drive encapsulation have the potential to influence RNA structure and function in compartment- and RNA sequence-dependent ways. Herein, we detail Next-Generation Sequencing (NGS) experiments performed for the first time in membraneless compartments called complex coacervates to characterize the fold of many different transfer RNAs (tRNAs) simultaneously under the potentially denaturing conditions of these compartments. Strikingly, we find that natural modifications favor the native fold of tRNAs in these compartments. This suggests that covalent RNA modifications could have played a critical role in metabolic processes at the origin of life. One Sentence Summary We demonstrate that RNA folds into native secondary and tertiary structures in protocell models and that this is favored by covalent modifications, which is critical for the origins of life.
Collapse
|
13
|
A liquid crystal world for the origins of life. Emerg Top Life Sci 2022; 6:557-569. [PMID: 36373852 DOI: 10.1042/etls20220081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acids (NAs) in modern biology accomplish a variety of tasks, and the emergence of primitive nucleic acids is broadly recognized as a crucial step for the emergence of life. While modern NAs have been optimized by evolution to accomplish various biological functions, such as catalysis or transmission of genetic information, primitive NAs could have emerged and been selected based on more rudimental chemical-physical properties, such as their propensity to self-assemble into supramolecular structures. One such supramolecular structure available to primitive NAs are liquid crystal (LC) phases, which are the outcome of the collective behavior of short DNA or RNA oligomers or monomers that self-assemble into linear aggregates by combinations of pairing and stacking. Formation of NA LCs could have provided many essential advantages for a primitive evolving system, including the selection of potential genetic polymers based on structure, protection by compartmentalization, elongation, and recombination by enhanced abiotic ligation. Here, we review recent studies on NA LC assembly, structure, and functions with potential prebiotic relevance. Finally, we discuss environmental or geological conditions on early Earth that could have promoted (or inhibited) primitive NA LC formation and highlight future investigation axes essential to further understanding of how LCs could have contributed to the emergence of life.
Collapse
|
14
|
Root-Bernstein R, Brown AW. Novel Apparatuses for Incorporating Natural Selection Processes into Origins-of-Life Experiments to Produce Adaptively Evolving Chemical Ecosystems. Life (Basel) 2022; 12:1508. [PMID: 36294944 PMCID: PMC9605314 DOI: 10.3390/life12101508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/21/2022] Open
Abstract
Origins-of-life chemical experiments usually aim to produce specific chemical end-products such as amino acids, nucleic acids or sugars. The resulting chemical systems do not evolve or adapt because they lack natural selection processes. We have modified Miller origins-of-life apparatuses to incorporate several natural, prebiotic physicochemical selection factors that can be tested individually or in tandem: freezing-thawing cycles; drying-wetting cycles; ultraviolet light-dark cycles; and catalytic surfaces such as clays or minerals. Each process is already known to drive important origins-of-life chemical reactions such as the production of peptides and synthesis of nucleic acid bases and each can also destroy various reactants and products, resulting selection within the chemical system. No previous apparatus has permitted all of these selection processes to work together. Continuous synthesis and selection of products can be carried out over many months because the apparatuses can be re-gassed. Thus, long-term chemical evolution of chemical ecosystems under various combinations of natural selection may be explored for the first time. We argue that it is time to begin experimenting with the long-term effects of such prebiotic natural selection processes because they may have aided biotic life to emerge by taming the combinatorial chemical explosion that results from unbounded chemical syntheses.
Collapse
Affiliation(s)
| | - Adam W. Brown
- Department of Art, Art History and Design, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Ameta S, Matsubara YJ, Chakraborty N, Krishna S, Thutupalli S. Self-Reproduction and Darwinian Evolution in Autocatalytic Chemical Reaction Systems. Life (Basel) 2021; 11:308. [PMID: 33916135 PMCID: PMC8066523 DOI: 10.3390/life11040308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding the emergence of life from (primitive) abiotic components has arguably been one of the deepest and yet one of the most elusive scientific questions. Notwithstanding the lack of a clear definition for a living system, it is widely argued that heredity (involving self-reproduction) along with compartmentalization and metabolism are key features that contrast living systems from their non-living counterparts. A minimal living system may be viewed as "a self-sustaining chemical system capable of Darwinian evolution". It has been proposed that autocatalytic sets of chemical reactions (ACSs) could serve as a mechanism to establish chemical compositional identity, heritable self-reproduction, and evolution in a minimal chemical system. Following years of theoretical work, autocatalytic chemical systems have been constructed experimentally using a wide variety of substrates, and most studies, thus far, have focused on the demonstration of chemical self-reproduction under specific conditions. While several recent experimental studies have raised the possibility of carrying out some aspects of experimental evolution using autocatalytic reaction networks, there remain many open challenges. In this review, we start by evaluating theoretical studies of ACSs specifically with a view to establish the conditions required for such chemical systems to exhibit self-reproduction and Darwinian evolution. Then, we follow with an extensive overview of experimental ACS systems and use the theoretically established conditions to critically evaluate these empirical systems for their potential to exhibit Darwinian evolution. We identify various technical and conceptual challenges limiting experimental progress and, finally, conclude with some remarks about open questions.
Collapse
Affiliation(s)
- Sandeep Ameta
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Yoshiya J. Matsubara
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Nayan Chakraborty
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
| |
Collapse
|
16
|
Mizuuchi R, Ichihashi N. Primitive Compartmentalization for the Sustainable Replication of Genetic Molecules. Life (Basel) 2021; 11:life11030191. [PMID: 33670881 PMCID: PMC7997230 DOI: 10.3390/life11030191] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 01/03/2023] Open
Abstract
Sustainable replication and evolution of genetic molecules such as RNA are likely requisites for the emergence of life; however, these processes are easily affected by the appearance of parasitic molecules that replicate by relying on the function of other molecules, while not contributing to their replication. A possible mechanism to repress parasite amplification is compartmentalization that segregates parasitic molecules and limits their access to functional genetic molecules. Although extent cells encapsulate genomes within lipid-based membranes, more primitive materials or simple geological processes could have provided compartmentalization on early Earth. In this review, we summarize the current understanding of the types and roles of primitive compartmentalization regarding sustainable replication of genetic molecules, especially from the perspective of the prevention of parasite replication. In addition, we also describe the ability of several environments to selectively accumulate longer genetic molecules, which could also have helped select functional genetic molecules rather than fast-replicating short parasitic molecules.
Collapse
Affiliation(s)
- Ryo Mizuuchi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
- Correspondence: (R.M.); (N.I.)
| | - Norikazu Ichihashi
- Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
- Correspondence: (R.M.); (N.I.)
| |
Collapse
|
17
|
Zhao D, Bartlett S, Yung YL. Quantifying Mineral-Ligand Structural Similarities: Bridging the Geological World of Minerals with the Biological World of Enzymes. Life (Basel) 2020; 10:life10120338. [PMID: 33321803 PMCID: PMC7764262 DOI: 10.3390/life10120338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023] Open
Abstract
Metal compounds abundant on Early Earth are thought to play an important role in the origins of life. Certain iron-sulfur minerals for example, are proposed to have served as primitive metalloenzyme cofactors due to their ability to catalyze organic synthesis processes and facilitate electron transfer reactions. An inherent difficulty with studying the catalytic potential of many metal compounds is the wide range of data and parameters to consider when searching for individual minerals and ligands of interest. Detecting mineral-ligand pairs that are structurally analogous enables more relevant selections of data to study, since structural affinity is a key indicator of comparable catalytic function. However, current structure-oriented approaches tend to be subjective and localized, and do not quantify observations or compare them with other potential targets. Here, we present a mathematical approach that compares structural similarities between various minerals and ligands using molecular similarity metrics. We use an iterative substructure search in the crystal lattice, paired with benchmark structural similarity methods. This structural comparison may be considered as a first stage in a more advanced analysis tool that will include a range of chemical and physical factors when computing mineral-ligand similarity. This approach will seek relationships between the mineral and enzyme worlds, with applications to the origins of life, ecology, catalysis, and astrobiology.
Collapse
Affiliation(s)
- Daniel Zhao
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; (D.Z.); (Y.L.Y.)
- Department of Mathematics, Harvard University, Massachusetts Hall, Cambridge, MA 02138, USA
| | - Stuart Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; (D.Z.); (Y.L.Y.)
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan
- Correspondence:
| | - Yuk L. Yung
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA; (D.Z.); (Y.L.Y.)
- NASA Jet Propulsion Laboratory, Oak Grove Dr, La Cañada Flintridge, CA 91011, USA
| |
Collapse
|
18
|
Abstract
Thresholds are widespread in origin of life scenarios, from the emergence of chirality, to the appearance of vesicles, of autocatalysis, all the way up to Darwinian evolution. Here, we analyze the “error threshold,” which poses a condition for sustaining polymer replication, and generalize the threshold approach to other properties of prebiotic systems. Thresholds provide theoretical predictions, prescribe experimental tests, and integrate interdisciplinary knowledge. The coupling between systems and their environment determines how thresholds can be crossed, leading to different categories of prebiotic transitions. Articulating multiple thresholds reveals evolutionary properties in prebiotic scenarios. Overall, thresholds indicate how to assess, revise, and compare origin of life scenarios.
Collapse
Affiliation(s)
- Cyrille Jeancolas
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France.,Laboratoire d'Anthropologie Sociale, Collège de France, 52 rue du Cardinal Lemoine, 75005 Paris, France
| | - Christophe Malaterre
- Département de Philosophie and Centre de Recherche Interuniversitaire sur la Science et la Technologie (CIRST), Université du Québec à Montréal (UQAM), 455 boulevard René-Lévesque Est, Montréal, QC H3C 3P8, Canada
| | - Philippe Nghe
- Laboratoire de Biochimie, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
19
|
Le Vay K, Salibi E, Song EY, Mutschler H. Nucleic Acid Catalysis under Potential Prebiotic Conditions. Chem Asian J 2020; 15:214-230. [PMID: 31714665 PMCID: PMC7003795 DOI: 10.1002/asia.201901205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/05/2019] [Indexed: 01/25/2023]
Abstract
Catalysis by nucleic acids is indispensable for extant cellular life, and it is widely accepted that nucleic acid enzymes were crucial for the emergence of primitive life 3.5-4 billion years ago. However, geochemical conditions on early Earth must have differed greatly from the constant internal milieus of today's cells. In order to explore plausible scenarios for early molecular evolution, it is therefore essential to understand how different physicochemical parameters, such as temperature, pH, and ionic composition, influence nucleic acid catalysis and to explore to what extent nucleic acid enzymes can adapt to non-physiological conditions. In this article, we give an overview of the research on catalysis of nucleic acids, in particular catalytic RNAs (ribozymes) and DNAs (deoxyribozymes), under extreme and/or unusual conditions that may relate to prebiotic environments.
Collapse
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Elia Salibi
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Emilie Y. Song
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Hannes Mutschler
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
20
|
Bartlett SJ, Beckett P. Probing complexity: thermodynamics and computational mechanics approaches to origins studies. Interface Focus 2019; 9:20190058. [PMID: 31641432 DOI: 10.1098/rsfs.2019.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
This paper proposes new avenues for origins research that apply modern concepts from stochastic thermodynamics, information thermodynamics and complexity science. Most approaches to the emergence of life prioritize certain compounds, reaction pathways, environments or phenomena. What they all have in common is the objective of reaching a state that is recognizably alive, usually positing the need for an evolutionary process. As with life itself, this correlates with a growth in the complexity of the system over time. Complexity often takes the form of an intuition or a proxy for a phenomenon that defies complete understanding. However, recent progress in several theoretical fields allows the rigorous computation of complexity. We thus propose that measurement and control of the complexity and information content of origins-relevant systems can provide novel insights that are absent in other approaches. Since we have no guarantee that the earliest forms of life (or alien life) used the same materials and processes as extant life, an appeal to complexity and information processing provides a more objective and agnostic approach to the search for life's beginnings. This paper gives an accessible overview of the three relevant branches of modern thermodynamics. These frameworks are not commonly applied in origins studies, but are ideally suited to the analysis of such non-equilibrium systems. We present proposals for the application of these concepts in both theoretical and experimental origins settings.
Collapse
Affiliation(s)
- Stuart J Bartlett
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Patrick Beckett
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA.,Department of Civil and Environmental Engineering, University of California Davis, Davis, CA, USA
| |
Collapse
|