1
|
Karagözlü M, Aşır S, Abu Shama N, Göktürk I, Yılmaz F, Türkmen D, Denizli A, Özgören M. Development of Molecularly Imprinted Magnetic Amino Acid-Based Nanoparticles for Voltammetric Analysis of Lead Ions in Honey. Polymers (Basel) 2024; 16:1782. [PMID: 39000638 PMCID: PMC11244471 DOI: 10.3390/polym16131782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Lead (Pb) is a hazardous metal that poses a significant threat to both the environment and human health. The presence of Pb in food products such as honey can pose a significant risk to human health and is therefore important to detect and monitor. In this study, we propose a voltammetric detection method using molecularly imprinted polymer (MIP) electrodes to detect Pb (II) ions in honey. Pb (II) ion-imprinted amino acid-based nanoparticles with magnetic properties on a carbon paste electrode (MIP-CPE) were designed to have high sensitivity and selectivity towards Pb (II) ions in the honey sample. Zetasizer measurements, electron spin resonance, and scanning electron microscopy were used to characterize magnetic polymeric nanoparticles. The results showed that the voltammetric detection method using MIP-CPE was able to accurately detect Pb (II) ions in honey samples with a low detection limit. The proposed method offers a simple, rapid, cost-effective solution for detecting Pb (II) ions in honey. It could potentially be applied to other food products to ensure their safety for human consumption. The MIP-CPE sensor was designed to have high sensitivity and selectivity towards Pb (II) ions in the honey sample. The results showed that the technique was able to deliver highly sensitive results since seven different concentrations were prepared and detected to obtain an R2 of 0.9954, in addition to a low detection limit (LOD) of 0.0912 µM and a low quantification limit (LOQ) of 0.276 µM. Importantly, the analysis revealed no trace of Pb (II) ions in the honey samples obtained from Cyprus.
Collapse
Affiliation(s)
- Mehmet Karagözlü
- Department of Food Engineering, Faculty of Agriculture, Near East University, Nicosia 99138, Cyprus;
- Research Center for Science, Technology and Engineering (BILTEM), Near East University, Nicosia 99138, Cyprus
| | - Süleyman Aşır
- Research Center for Science, Technology and Engineering (BILTEM), Near East University, Nicosia 99138, Cyprus
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Nicosia 99138, Cyprus
| | - Nemah Abu Shama
- Department of Analytical Chemistry, Faculty of Pharmacy, Near East University, Nicosia 99138, Cyprus
| | - Ilgım Göktürk
- Department of Chemistry, Hacettepe University Ankara, Ankara 06800, Turkey
| | - Fatma Yılmaz
- Department of Chemistry and Chemical Processing Technologies, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey;
| | - Deniz Türkmen
- Department of Chemistry, Hacettepe University Ankara, Ankara 06800, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University Ankara, Ankara 06800, Turkey
| | - Murat Özgören
- Department of Biophysics, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus;
| |
Collapse
|
2
|
Shen Y, Miao P, Liu S, Gao J, Han X, Zhao Y, Chen T. Preparation and Application Progress of Imprinted Polymers. Polymers (Basel) 2023; 15:polym15102344. [PMID: 37242918 DOI: 10.3390/polym15102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Due to the specific recognition performance, imprinted polymers have been widely investigated and applied in the field of separation and detection. Based on the introduction of the imprinting principles, the classification of imprinted polymers (bulk imprinting, surface imprinting, and epitope imprinting) are summarized according to their structure first. Secondly, the preparation methods of imprinted polymers are summarized in detail, including traditional thermal polymerization, novel radiation polymerization, and green polymerization. Then, the practical applications of imprinted polymers for the selective recognition of different substrates, such as metal ions, organic molecules, and biological macromolecules, are systematically summarized. Finally, the existing problems in its preparation and application are summarized, and its prospects have been prospected.
Collapse
Affiliation(s)
- Yongsheng Shen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Pengpai Miao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Shucheng Liu
- Institute of Forensic Science, Hunan Provincial Public Security Bureau, Changsha 410001, China
| | - Jie Gao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaobing Han
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuan Zhao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Tao Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
3
|
Barzkar M, Ghiasvand A, Safdarian M. A simple and cost-effective synthesis route using itaconic acid to prepare a magnetic ion-imprinted polymer for preconcentration of Pb (II) from aqueous media. Talanta 2023; 259:124501. [PMID: 37031540 DOI: 10.1016/j.talanta.2023.124501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
A new Pb (II) magnetic ion-imprinted polymer (Pb-MIIP) was successfully investigated for the selective extraction of Pb (II) from an aqueous solution. MIIP nanostructures were developed using itaconic acid-coated iron oxide nanoparticles (Fe3O4@ITA) as a novel magnetic core, ITA as a functional monomer and chelating agent, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, and 2,2-azobisisobutyronitrile (AIBN) as an initiator. The triple application of ITA in the synthesis and reduction of the number of compounds in the preparation of the MIIP, in addition to being economical, reduces the possibility of side reactions. The synthesized products were followed and confirmed in each step by instrumental and microscopic methods. The limit of detection of the Pb (II)-MIIP method was 0.21 μg L-1. Under the optimal conditions, the recovery (R%) was >90% with a relative standard deviation (RSD%) of <4.9%. The synthesized MIIP was reusable and successfully used to extract Pb (II) from tap water samples.
Collapse
Affiliation(s)
- Minoo Barzkar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Ghiasvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khoramabad, Iran; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Mehdi Safdarian
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Wang S, Wang H, Wang S, Zhang L. Selective and highly efficient recovery of Au(III) by poly(ethylene sulfide)-functionalized UiO-66-NH2: Characterization and mechanisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
[Magnetic ion imprinting techniques for the separation and analysis of elemental speciation]. Se Pu 2022; 40:979-987. [PMID: 36351806 PMCID: PMC9654609 DOI: 10.3724/sp.j.1123.2022.07013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Metal and metalloid elements have various possible isotopic compositions and oxidation states and often form coordination or covalent compounds with inorganic and organic small molecules or biological macromolecules, resulting in complex elemental speciation. Different species of the same element often have different properties, which dictate their behavior. Thus, elemental speciation analysis is vital for comprehensively and accurately assessing an element's environmental and biological effects and the corresponding risks. Because elemental speciation determines the behavior of an element in different environmental and biological processes, the analysis of elemental species has, in recent years, been important in various subjects, including analytical chemistry, environmental chemistry, geochemistry, ecology, agronomy, and biomedicine. The complexity of environmental and biological sample matrices, as well as the multiformity, low levels, and lability of chemical forms pose severe challenges in elemental speciation analysis. Therefore, the highly selective identification and efficient separation of native species is necessary for conducting the identification, quantification, ecotoxicity evaluation, and physiological function study of elemental speciation. Sample pretreatment by solid-phase extraction is an effective solution to the aforementioned problems, but the existing methods do not meet the requirements of current research. The transition of the target species from pre-processing to the detection device includes both on- and off-line arrangements. Compared with the on-line approach, the off-line approach requires more manual participation, increasing the analysis workload. However, the off-line approach can improve the analysis efficiency through high-throughput pretreatment when large batches of samples are encountered, meaning the off-line approach is still an effective model. Ion imprinting technology has been developed based on existing molecular imprinting technology, with four main steps present in the synthesis of ion imprinted polymers. First, ion imprinting technology uses metal ions as templates. Then, these templates are combined with the functional monomers through coordination, electrostatic or hydrogen bonding. The functional monomers simultaneously surround and fix the templates, after which the cross-linkers and functional monomers polymerize to prepare ion-imprinted polymers with a specific structure and composition. Finally, the imprinted holes are created in the polymers by eluting the template ions. Therefore, the template molecules, functional monomers, and cross-linkers are three precursors necessary for synthesizing ion-imprinted polymers. These polymers can specifically bind to the imprinted metal ions with accuracy, sensitivity, and reliability. In recent years, they have been widely used in separating, enriching, analyzing, and detecting elemental species. During solid-phase extraction, the non-magnetic adsorbent materials dispersed in the sample solution need to be separated by centrifugation or filtration, which is time-consuming and laborious. Because an external magnetic field can be used for rapid magnetic solid-phase extraction, it has become a potential method for separating and enriching elemental species. This review systematically summarizes the latest progress in ion-imprinting technology, including its principle and the preparation methods of ion-imprinted polymers. The challenges faced by ion imprinting technology are analyzed in the context of the development of ion-imprinting magnetic solid-phase extraction in elemental speciation analysis. Finally, the direction of future development and the strategies of ion imprinting technology in elemental speciation analysis are proposed. It is important to exploit novel organic-inorganic hybrid polymerization-based multifunctional ion-imprinted magnetic nanocomposites for the magnetic solid-phase extraction and separation of elemental species. By establishing the pretreatment protocols with high recognition selectivity, strong separation ability, large adsorption capacity, and good speciation stability, we expect to achieve the research objectives of simultaneously separating and enriching the multiple-species of typical metal/metalloid elements in environmental and biological samples.
Collapse
|
6
|
Wang S, Wang H, Wang S, Fu L, Zhang L. Novel magnetic covalent organic framework for the selective and effective removal of hazardous metal Pb(II) from solution: Synthesis and adsorption characteristics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Zhang Y, Tian X, Zhang Z, Tang N, Ding Y, Wang Y, Li D. Boronate affinity-based template-immobilization surface imprinted quantum dots as fluorescent nanosensors for selective and sensitive detection of myricetin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121023. [PMID: 35182922 DOI: 10.1016/j.saa.2022.121023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
In order to prepare a kind of efficient fluorescence sensors for determination of cis-diol-containing flavonoids, novel imprinted quantum dots for myricetin (Myr) were prepared based on boronate affinity-based template-immobilization surface imprinting. The obtained boronate affinity-based surface imprinted silica (imprinted APBA-functionalized CdTe QDs) was used as recognition elements. The quantum dots were used as signal-transduction materials. Under the optimum conditions, according to fluorescence quenching of imprinted APBA-functionalized CdTe QDs by Myr, the imprinting factor (IF) for Myr was evaluated to be 7.88. The result indicated that the boronate affinity functionalized quantum dots coated with imprinted silica were successfully prepared. The prepared imprinted APBA-functionalized CdTe QDs exhibited good sensitivity and selectivity for Myr. The fluorescence intensity was inversely proportional to the concentration of Myr in the 0.30-40 μM concentration range. And its detection limit was obtained to be 0.08 μM. Using the fluorescence sensors, the detection of Myr in real samples was successfully carried out, and the concentration of Myr in green tea and apple juice samples was evaluated to be 2.26 mg/g and 0.73 mg/g, respectively. The recoveries for the spiked green tea and apple juice samples were 95.2-105.0% and 91.5-111.0%, respectively. This study also provides an efficient fluorescent detection method for cis-diol-containing flavonoids in real samples.
Collapse
Affiliation(s)
- Yansong Zhang
- School of Food and Drug, Luoyang Normal University, Luoyang, 471934, China
| | - Xiping Tian
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Zixin Zhang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Na Tang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yihan Ding
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yipei Wang
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Daojin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| |
Collapse
|
8
|
Ren Z, Wang J, Zhang H, Zhang F, Tian S, Zhou Z. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Li D, Zhai S, Song R, Liu Z, Wang W. Determination of cis-diol-containing flavonoids in real samples using boronate affinity quantum dots coated with imprinted silica based on controllable oriented surface imprinting approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117542. [PMID: 31685427 DOI: 10.1016/j.saa.2019.117542] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 05/11/2023]
Abstract
Novel boronate affinity imprinted quantum dots (BA-CdTe@MIPs QDs) were used to develop a selective and sensitive fluorescent nanosensor for determination of cis-diol-containing flavonoids such as quercetin (Qu), baicalein (Bai) and luteolin (Lut) based on controllable oriented surface imprinting approach. The boronate affinity imprinted silica was used as recognition elements. Under the optimum conditions, the imprinting factor (IF) for Qu, Bai and Lut was evaluated to be 9.42, 6.58 and 10.91, respectively. The results indicated that the boronate affinity quantum dots coated with imprinted silica were successfully prepared. The obtained BA-CdTe@MIPs QDs provided high selectivity and high sensitivity for cis-diol-containing flavonoids such as quercetin and luteolin. The BA-CdTe@MIPs QDs exhibited linear decrease in fluorescence intensity with the increase of concentration of quercetin in the 0.05-25 μM concentration range. The detection limit (LOD) is evaluated to be 0.02 μM. The obtained fluorescent nanosensor could be successfully applied to efficient detection of cis-diol-containing flavonoids in onion skin and human urine samples. The recoveries for the spiked onion skin and urine samples were evaluated to be 83.50-104.00% and 86.67-105.00%, respectively. Clearly, this study provides a rapid and efficient fluorescent detection tool for cis-diol-containing flavonoids in real samples.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China.
| | - Simeng Zhai
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| | - Rumeng Song
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| | - Zheyao Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| | - Weizhou Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| |
Collapse
|
10
|
Hasan I, Khan RA, Alharbi W, Alharbi KH, Alsalme A. In Situ Copolymerized Polyacrylamide Cellulose Supported Fe 3O 4 Magnetic Nanocomposites for Adsorptive Removal of Pb(II): Artificial Neural Network Modeling and Experimental Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1687. [PMID: 31775334 PMCID: PMC6955854 DOI: 10.3390/nano9121687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022]
Abstract
The inimical effects associated with heavy metals are serious concerns, particularly with respect to global health-related issues, because of their non-ecological characteristics and high toxicity. Current research in this area is focused on the synthesis of poly(acrylamide) grafted Cell@Fe3O4 nanocomposites via oxidative free radical copolymerization of the acrylamide monomer and its application for the removal of Pb(II). The hybrid material was analyzed using different analytical techniques, including thermogravimetric analysis (TGA), Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) analysis. The efficacious impact of variable parameters, including contact time, pH, material dose, initial Pb(II) concentration, and the temperature, was investigated and optimized using both batch and artificial neural networks (ANN). Surface digestion of metal ions is exceedingly pH-dependent, and higher adsorption efficiencies and adsorption capacities of Pb(II) were acquired at a pH value of 5. The acquired equilibrium data were analyzed using different isotherm models, including Langmuir, Freundlich, Temkin, and Redlich-Peterson models. In this investigation, the best performance was obtained using the Langmuir model. The maximum adsorption capacity of the material investigated via monolayer formation was determined to be 314.47 mg g-1 at 323 K, 239.74 mg g-1 at 313 K, and 100.79 mg g-1 at 303 K.
Collapse
Affiliation(s)
- Imran Hasan
- The Environmental Research Laboratory, Department of Chemistry, Chandigarh University, Mohali 140301, India
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Walaa Alharbi
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia
| | - Khadijah H. Alharbi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21911, Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
11
|
Jiang X, An QD, Xiao ZY, Zhai SR, Cui L. Selective capture of lanthanum and lead cations over biomass-derived ion-imprinted biomacromolecule adsorbents. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Chen L, Dai J, Hu B, Wang J, Wu Y, Dai J, Meng M, Li C, Yan Y. Recent Progresses on the Adsorption and Separation of Ions by Imprinting Routes. SEPARATION & PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1596134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Li Chen
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Jingwen Dai
- Department of Battery Materials, China Aviation Lithium Battery Research Institute Co. Ltd, Changzhou, China
| | - Bo Hu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Jixiang Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Yilin Wu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Jiangdong Dai
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Minjia Meng
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Chunxiang Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Shen W, Jiang X, An QD, Xiao ZY, Zhai SR, Cui L. Combining mussel and seaweed hydrogel-inspired strategies to design novel ion-imprinted sorbents for ultra-efficient lead removal from water. NEW J CHEM 2019. [DOI: 10.1039/c8nj06154h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lead(ii) is one of the most toxic heavy metals and is a serious threat to the environment and human health.
Collapse
Affiliation(s)
- Wei Shen
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Xiao Jiang
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Qing-Da An
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Zuo-Yi Xiao
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Shang-Ru Zhai
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Li Cui
- Faculty of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| |
Collapse
|
14
|
Wu J, Wang R, Lu Y, Jia M, Yan J, Bian X. Facile Preparation of a Bacteria Imprinted Artificial Receptor for Highly Selective Bacterial Recognition and Label-Free Impedimetric Detection. Anal Chem 2018; 91:1027-1033. [DOI: 10.1021/acs.analchem.8b04314] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jikui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruinan Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yunfei Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Jia
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Juan Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaojun Bian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|