1
|
Moghimikheirabadi A, Kröger M, Karatrantos AV. Insights from modeling into structure, entanglements, and dynamics in attractive polymer nanocomposites. SOFT MATTER 2021; 17:6362-6373. [PMID: 34128028 PMCID: PMC8262555 DOI: 10.1039/d1sm00683e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/08/2021] [Indexed: 05/28/2023]
Abstract
Conformations, entanglements and dynamics in attractive polymer nanocomposites are investigated in this work by means of coarse-grained molecular dynamics simulation, for both weak and strong confinements, in the presence of nanoparticles (NPs) at NP volume fractions φ up to 60%. We show that the behavior of the apparent tube diameter dapp in such nanocomposites can be greatly different from nanocomposites with nonattractive interactions. We find that this effect originates, based on a mean field argument, from the geometric confinement length dgeo at strong confinement (large φ) and not from the bound polymer layer on NPs (interparticle distance ID <2Rg) as proposed recently based on experimental measurements. Close to the NP surface, the entangled polymer mobility is reduced in attractive nanocomposites but still faster than the NP mobility for volume fractions beyond 20%. Furthermore, entangled polymer dynamics is hindered dramatically by the strong confinement created by NPs. For the first time using simulations, we show that the entangled polymer conformation, characterized by the polymer radius of gyration Rg and form factor, remains basically unperturbed by the presence of NPs up to the highest volume fractions studied, in agreement with various experiments on attractive nanocomposites. As a side-result we demonstrate that the loose concept of ID can be made a microscopically well defined quantity using the mean pore size of the NP arrangement.
Collapse
Affiliation(s)
- Ahmad Moghimikheirabadi
- Department of Materials, Polymer Physics, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland.
| | - Martin Kröger
- Department of Materials, Polymer Physics, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland.
| | - Argyrios V Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
2
|
Moghimikheirabadi A, Mugemana C, Kröger M, Karatrantos AV. Polymer Conformations, Entanglements and Dynamics in Ionic Nanocomposites: A Molecular Dynamics Study. Polymers (Basel) 2020; 12:E2591. [PMID: 33158229 PMCID: PMC7694256 DOI: 10.3390/polym12112591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/17/2022] Open
Abstract
We investigate nanoparticle (NP) dispersion, polymer conformations, entanglements and dynamics in ionic nanocomposites. To this end, we study nanocomposite systems with various spherical NP loadings, three different molecular weights, two different Bjerrum lengths, and two types of charge-sequenced polymers by means of molecular dynamics simulations. NP dispersion can be achieved in either oligomeric or entangled polymeric matrices due to the presence of electrostatic interactions. We show that the overall conformations of ionic oligomer chains, as characterized by their radii of gyration, are affected by the presence and the amount of charged NPs, while the dimensions of charged entangled polymers remain unperturbed. Both the dynamical behavior of polymers and NPs, and the lifetime and amount of temporary crosslinks, are found to depend on the ratio between the Bjerrum length and characteristic distance between charged monomers. Polymer-polymer entanglements start to decrease beyond a certain NP loading. The dynamics of ionic NPs and polymers is very different compared with their non-ionic counterparts. Specifically, ionic NP dynamics is getting enhanced in entangled matrices and also accelerates with the increase of NP loading.
Collapse
Affiliation(s)
- Ahmad Moghimikheirabadi
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland
| | - Clément Mugemana
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, CH-8093 Zurich, Switzerland
| | - Argyrios V. Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
| |
Collapse
|
3
|
Moghimikheirabadi A, Ilg P, Sagis LMC, Kröger M. Surface Rheology and Structure of Model Triblock Copolymers at a Liquid–Vapor Interface: A Molecular Dynamics Study. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Patrick Ilg
- School of Mathematical, Physical and Computational Sciences, University of Reading, Reading RG6 6AX, U.K
| | - Leonard M. C. Sagis
- Food Physics Group, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zürich, Zürich CH-8093, Switzerland
| |
Collapse
|
4
|
Moghimikheirabadi A, Fischer P, Kröger M, Sagis LMC. Relaxation Behavior and Nonlinear Surface Rheology of PEO-PPO-PEO Triblock Copolymers at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14388-14396. [PMID: 31592664 DOI: 10.1021/acs.langmuir.9b02540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface dilatational viscoelasticity of adsorbed layers of pluronics triblock copolymers at the air-water interface was measured using the oscillating barrier technique. The effect of molecular architecture and concentration on surface viscoelasticity was explored for two different types of pluronics with different degrees of hydrophobicity, Pluronic F-108 (Mw ≈ 14 600 g/mol) and Pluronic P-123 (Mw ≈ 5800 g/mol), the former exhibiting a larger hydrophilic to hydrophobic block length ratio. Frequency sweeps in the linear regime suggested that interfacial films of F-108 have higher surface limiting elasticity and larger in-plane and out-of-plane relaxation times at the same bulk concentration (the former possibly related to in-plane microstructure rearrangements, the latter to surface/bulk diffusion). Increasing the bulk concentration of pluronics from 1 to 100 μM led to a decrease in both in- and out-of-plane relaxation times. Large amplitude oscillatory dilatation (LAOD) tests were performed to capture nonlinear behavior of these interfacial films by means of elastic and viscous Lissajous plots. Nonlinearities in elastic responses were quantified through calculation of the strain-stiffening indices in extension SE and compression SC. Both pluronics exhibited strain softening in extension. In compression, P-123 showed strain-hardening and F-108 displayed a relatively linear response. Apparent strain hardening in extension was observed for the P-123 adsorbed film, at high strain, at a bulk concentration of 100 μM. However, at these strains, the response was dominated by the viscous contribution and calculation of strain rate-thickening factors in extension and compression showed that the overall response was strain rate-thinning in extension and strain rate-thickening in compression.
Collapse
Affiliation(s)
| | - Peter Fischer
- Laboratory of Food Process Engineering, Department of Health Sciences and Technology , ETH Zürich , 8092 Zürich , Switzerland
| | - Martin Kröger
- Polymer Physics, Department of Materials , ETH Zürich , 8093 Zürich , Switzerland
| | - Leonard M C Sagis
- Food Physics Group , Wageningen University , Bornse Weilanden 9 , 6708 WG Wageningen , The Netherlands
| |
Collapse
|
5
|
Sagis LMC, Liu B, Li Y, Essers J, Yang J, Moghimikheirabadi A, Hinderink E, Berton-Carabin C, Schroen K. Dynamic heterogeneity in complex interfaces of soft interface-dominated materials. Sci Rep 2019; 9:2938. [PMID: 30814587 PMCID: PMC6393553 DOI: 10.1038/s41598-019-39761-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/01/2019] [Indexed: 11/09/2022] Open
Abstract
Complex interfaces stabilized by proteins, polymers or nanoparticles, have a much richer dynamics than those stabilized by simple surfactants. By subjecting fluid-fluid interfaces to step extension-compression deformations, we show that in general these complex interfaces have dynamic heterogeneity in their relaxation response that is well described by a Kohlrausch-Williams-Watts function, with stretch exponent β between 0.4-0.6 for extension, and 0.6-1.0 for compression. The difference in β between expansion and compression points to an asymmetry in the dynamics. Using atomic force microscopy and simulations we prove that the dynamic heterogeneity is intimately related to interfacial structural heterogeneity and show that the dominant mode for stretched exponential relaxation is momentum transfer between bulk and interface, a mechanism which has so far largely been ignored in experimental surface rheology. We describe how its rate constant can be determined using molecular dynamics simulations. These interfaces clearly behave like disordered viscoelastic solids and need to be described substantially different from the 2d homogeneous viscoelastic fluids typically formed by simple surfactants.
Collapse
Affiliation(s)
- Leonard M C Sagis
- Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
- ETH Zurich, Department of Materials, Polymer Physics, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland.
| | - Bingxue Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Yuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China.
| | - Jeffrey Essers
- Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
- Food Process Engineering Group, Wageningen University, Wageningen, 6700 AA, The Netherlands
| | - Jack Yang
- Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Ahmad Moghimikheirabadi
- ETH Zurich, Department of Materials, Polymer Physics, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Emma Hinderink
- Food Process Engineering Group, Wageningen University, Wageningen, 6700 AA, The Netherlands
| | - Claire Berton-Carabin
- Food Process Engineering Group, Wageningen University, Wageningen, 6700 AA, The Netherlands
| | - Karin Schroen
- Food Process Engineering Group, Wageningen University, Wageningen, 6700 AA, The Netherlands
| |
Collapse
|
6
|
Moghimikheirabadi A, Sagis LMC, Kröger M, Ilg P. Gas–liquid phase equilibrium of a model Langmuir monolayer captured by a multiscale approach. Phys Chem Chem Phys 2019; 21:2295-2306. [PMID: 30328439 DOI: 10.1039/c8cp05447a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here propose a multiscale approach that allows the gas–liquid expanded phase equilibrium of a Langmuir monolayer to be studied efficiently by coarse-grained two-dimensional simulations and density functional theory.
Collapse
Affiliation(s)
| | | | - Martin Kröger
- Polymer Physics
- Department of Materials
- ETH Zürich
- CH-8093 Zürich
- Switzerland
| | - Patrick Ilg
- School of Mathematical
- Physical and Computational Sciences
- University of Reading
- Reading
- UK
| |
Collapse
|