1
|
Cederbaum LS, Fedyk J. Activating cavity by electrons. COMMUNICATIONS PHYSICS 2023; 6:111. [PMID: 38665403 PMCID: PMC11041782 DOI: 10.1038/s42005-023-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/27/2023] [Indexed: 04/28/2024]
Abstract
The interaction of atoms and molecules with quantum light as realized in cavities has become a highly topical and fast growing research field. This interaction leads to hybrid light-matter states giving rise to new phenomena and opening up pathways to control and manipulate properties of the matter. Here, we substantially extend the scope of the interaction by allowing free electrons to enter the cavity and merge and unify the two active fields of electron scattering and quantum-light-matter interaction. In the presence of matter, hybrid metastable states are formed at electron energies of choice. The properties of these states depend strongly on the frequency and on the light-matter coupling of the cavity. The incoming electrons can be captured by the matter inside the cavity solely due to the presence of the cavity. The findings are substantiated by an explicit example and general consequences are discussed.
Collapse
Affiliation(s)
- Lorenz S. Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Jacqueline Fedyk
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
2
|
Li J, Wang R, Huang W, Zhu Y, Teo BK, Wang Z. Smallest Endohedral Metallofullerenes [Mg@C 20] n ( n = 4, 2, 0, -2, and -4): Endo-Ionic Interaction in Superatoms. J Phys Chem Lett 2023; 14:2862-2868. [PMID: 36920152 DOI: 10.1021/acs.jpclett.3c00445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This work reports a series of endohedral metallofullerene superatoms [Mg@C20]n, where n = 4, 2, 0, -2, and -4. It was found that Mg transfers virtually all of its 3s electrons to the C20 shell, resulting in the ionic states of Mg2+@[C20]n-2. Detailed calculations revealed that the superatomic electronic configuration of these clusters is 1S21P61D101F4-n. The first nine superatomic molecular orbitals (SAMOs), 1S21P61D10, housed with 18 electrons, are largely based on [C20]n-2 with small contributions from magnesium, while the outmost SAMOs, 1F4-n, with 4 - n extra electrons, reside solely on [C20]n-2. The interaction between the Mg2+ ion and [C20]n-2 was found to be predominately ionic in character. Furthermore, ultraviolet-visible spectra provide a theoretical basis for fingerprinting these clusters. It is hoped that this work will encourage the synthetic pursuit of these smallest superatomic systems.
Collapse
Affiliation(s)
- Jiarui Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Rui Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Wanrong Huang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Boon K Teo
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhigang Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
3
|
Yang Y, Cederbaum LS. Endocircular Li Carbon Rings. Angew Chem Int Ed Engl 2021; 60:16649-16654. [PMID: 34003563 PMCID: PMC8361956 DOI: 10.1002/anie.202105222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Indexed: 12/12/2022]
Abstract
By employing accurate state-of-the-art many-electron quantum-chemistry methods, we establish that monocyclic carbon rings can accommodate Li guest atoms. The low-lying electronic states of these endocircular systems are analyzed and found to include both charge-separated states where the guest Li atom appears as a cation and the ring as an anion and encircled-electron states where Li and the ring are neutral. The electron binding energies of the encircled-electron states increase drastically at their highly symmetric equilibrium geometries with increasing size of the ring, and in Li@C24 , this state becomes the ground state. Li is very weakly bound vertical to the rings in the low-lying encircled-electron states, hinting to van-der-Waals binding. Applcations are mentioned.
Collapse
Affiliation(s)
- Yi‐Fan Yang
- Theoretical ChemistryInstitute of Physical ChemistryUniversität HeidelbergIm Neuenheimer Feld 229HeidelbergGermany
| | - Lorenz S. Cederbaum
- Theoretical ChemistryInstitute of Physical ChemistryUniversität HeidelbergIm Neuenheimer Feld 229HeidelbergGermany
| |
Collapse
|
4
|
Yang Y, Cederbaum LS. Endocircular Li Carbon Rings. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yi‐Fan Yang
- Theoretical Chemistry Institute of Physical Chemistry Universität Heidelberg Im Neuenheimer Feld 229 Heidelberg Germany
| | - Lorenz S. Cederbaum
- Theoretical Chemistry Institute of Physical Chemistry Universität Heidelberg Im Neuenheimer Feld 229 Heidelberg Germany
| |
Collapse
|
5
|
Yang YF, Cederbaum LS. Caged-electron states and split-electron states in the endohedral alkali C 60. Phys Chem Chem Phys 2021; 23:11837-11843. [PMID: 33988191 DOI: 10.1039/d1cp01341f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The low-lying electronic states of neutral X@C60 (X = Li, Na, K, Rb) have been computed and analyzed by employing state-of-the-art high level many-electron methods. Apart from the common charge-separated states, well known to be present in endohedral fullerenes, one non-charge-separated state has been found in each of the investigated systems. In Li@C60 and Na@C60, the non-charge-separated state is a caged-electron state already discussed before for Li@C60. This indicates that the application of this low-lying state of Li@C60 discussed before is also applicable for Na@C60. In K@C60 and Rb@C60, the electronic radial distribution analysis shows that this hitherto unknown non-charge-separated state possesses a different nature from that of a caged-electron state.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Yang YF, Cederbaum LS. Bound states and symmetry breaking of the ring C 20 - anion. J Chem Phys 2020; 152:244307. [PMID: 32610979 DOI: 10.1063/5.0012926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Determining the geometry of carbon rings is an ongoing challenge. Based on our calculations at a state-of-the-art level, we found that the C20 - ring possesses five bound electronic states, including a superatomic state, which is the first superatomic state found for a ring. The nature of these electronic states is discussed. Our calculation reveals a symmetry breaking of the C20 - ring anion ground electronic structure occurring upon attaching an electron to the neutral ring. The discussion of the possible symmetry breaking mechanisms indicates that the shrinking and distortion of the ring upon electron attachment, leading to the symmetry breaking, is a result of the interplay between the symmetry breaking and the totally symmetric modes. The discussion enriches the palette of possible symmetry breaking phenomena in carbon clusters.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
7
|
Yang YF, Gromov EV, Cederbaum LS. Caged-Electron States in Endohedral Li Fullerenes. J Phys Chem Lett 2019; 10:7617-7622. [PMID: 31755717 DOI: 10.1021/acs.jpclett.9b02934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
By employing large-scale high-level EA-EOM-CCSD calculations, we have computed and analyzed the low-lying states of neutral Li@C60. Apart from one state, all states are found to be charge-separated states of the type Li+@C60-. The new state is the first reported non-charge-separated state in endohedral alkali fullerenes. This caged-electron state is analyzed in detail. Arguments are given that in larger highly symmetric endohedral fullerenes the caged-electron state can be the electronic ground state of the system. HF and DFT calculations on Li@C180 indeed find that the caged-electron state is the ground state and that in its equilibrium geometry Li sits at the center of the cage. Applications are mentioned.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Theoretical Chemistry, Institute of Physical Chemistry , Heidelberg University , D-69120 Heidelberg , Germany
| | - Evgeniy V Gromov
- Theoretical Chemistry, Institute of Physical Chemistry , Heidelberg University , D-69120 Heidelberg , Germany
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry , Heidelberg University , D-69120 Heidelberg , Germany
| |
Collapse
|
8
|
Yang YF, Gromov EV, Cederbaum LS. Charge separated states of endohedral fullerene Li@C 20. J Chem Phys 2019; 151:114306. [PMID: 31542008 DOI: 10.1063/1.5120017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We report on high-level coupled-cluster calculations of electronic states of the neutral endohedral fullerene Li@C20. All computed states of neutral Li@C20 are found to be the charge separated states of the Li+@C20 - type. Using the state-of-the-art EA-EOM-CCSD method, we found that neutral Li@C20 (D3d) possesses several valence and superatomic charge separated states with considerable electron binding energies, the strongest bound state of Li+@C20 - being the 12Eu state (6.73 eV). The valence charge separated states correspond to two sets of states of C20 -. The states 12Eu, 12A2u, 22Eu, and 22A2u correspond to the respective bound states of C20 -, and the states 22A2g, 12Eg, 12A1g, and 42Eu correspond to the unbound states of C20 -. There are eight superatomic states with electron binding energy higher than 1.0 eV, being much stronger bound than the single weakly bound superatomic state of the parent fullerene anion. The analysis of the radial density distribution of the excess electron on the carbon cage indicates the important role of the inner part of the superatomic states in forming the charge separated states.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Evgeniy V Gromov
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|