1
|
Giampà M, Corinti D, Maccelli A, Fornarini S, Berden G, Oomens J, Schwarzbich S, Glaser T, Crestoni ME. Binding Modes of a Cytotoxic Dinuclear Copper(II) Complex with Phosphate Ligands Probed by Vibrational Photodissociation Ion Spectroscopy. Inorg Chem 2023; 62:1341-1353. [PMID: 36655890 PMCID: PMC9890465 DOI: 10.1021/acs.inorgchem.2c02091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The dinuclear copper complex bearing a 2,7-disubstituted-1,8-naphthalenediol ligand, [(HtomMe){Cu(OAc)}2](OAc), a potential anticancer drug able to bind to two neighboring phosphates in the DNA backbone, is endowed with stronger cytotoxic effects and inhibition ability of DNA synthesis in human cancer cells as compared to cisplatin. In this study, the intrinsic binding ability of the charged complex [(HtomMe){Cu(OAc)}2]+ is investigated with representative phosphate diester ligands with growing chemical complexity, ranging from simple inorganic phosphate up to mononucleotides. An integrated method based on high-resolution mass spectrometry (MS), tandem MS, and infrared multiple photon dissociation (IRMPD) spectroscopy in the 600-1800 cm-1 spectral range, backed by quantum chemical calculations, has been used to characterize complexes formed in solution and delivered as bare species by electrospray ionization. The structural features revealed by IRMPD spectroscopy have been interpreted by comparison with linear IR spectra of the lowest-energy structures, revealing diagnostic signatures of binding modes of the dinuclear copper(II) complex with phosphate groups, whereas the possible competitive interaction with the nucleobase is silenced in the gas phase. This result points to the prevailing interaction of [(HtomMe){Cu(OAc)}2]+ with phosphate diesters and mononucleotides as a conceivable contribution to the observed anticancer activity.
Collapse
Affiliation(s)
- Marco Giampà
- Department
of Clinical and Molecular Medicine, Norwegian
University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Davide Corinti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy,
| | - Alessandro Maccelli
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy
| | - Giel Berden
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Sabrina Schwarzbich
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, D-33615 Bielefeld, Germany
| | - Thorsten Glaser
- Lehrstuhl
für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, D-33615 Bielefeld, Germany
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, I-00185 Roma, Italy,
| |
Collapse
|
2
|
Greis K, Kirschbaum C, Taccone MI, Götze M, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Pagel K. Studying the Key Intermediate of RNA Autohydrolysis by Cryogenic Gas-Phase Infrared Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202115481. [PMID: 35231141 PMCID: PMC9314874 DOI: 10.1002/anie.202115481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 11/09/2022]
Abstract
Over the course of the COVID-19 pandemic, mRNA-based vaccines have gained tremendous importance. The development and analysis of modified RNA molecules benefit from advanced mass spectrometry and require sufficient understanding of fragmentation processes. Analogous to the degradation of RNA in solution by autohydrolysis, backbone cleavage of RNA strands was equally observed in the gas phase; however, the fragmentation mechanism remained elusive. In this work, autohydrolysis-like intermediates were generated from isolated RNA dinucleotides in the gas phase and investigated using cryogenic infrared spectroscopy in helium nanodroplets. Data from both experiment and density functional theory provide evidence for the formation of a five-membered cyclic phosphate intermediate and rule out linear or six-membered structures. Furthermore, the experiments show that another prominent condensed-phase reaction of RNA nucleotides can be induced in the gas phase: the tautomerization of cytosine. Both observed reactions are therefore highly universal and intrinsic properties of the investigated molecules.
Collapse
Affiliation(s)
- Kim Greis
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Carla Kirschbaum
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Martín I. Taccone
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Michael Götze
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| | - Kevin Pagel
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Fritz-Haber-Institut der Max-Planck-GesellschaftFaradayweg 4–614195BerlinGermany
| |
Collapse
|
3
|
Greis K, Kirschbaum C, Taccone MI, Götze M, Gewinner S, Schöllkopf W, Meijer G, Helden G, Pagel K. Untersuchung des reaktiven Intermediats der RNA Autohydrolyse mittels kryogener Infrarotspektroskopie in der Gasphase. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kim Greis
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Carla Kirschbaum
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Martín I. Taccone
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Michael Götze
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Gert Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| | - Kevin Pagel
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4–6 14195 Berlin Deutschland
| |
Collapse
|
4
|
Avilés-Moreno JR, Berden G, Oomens J, Martínez-Haya B. Insights into the binding of arginine to adenosine phosphate from mimetic complexes. Phys Chem Chem Phys 2022; 24:27136-27145. [DOI: 10.1039/d2cp04371h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The recognition of adenosine monophosphate (AMP) by arginine-rich proteins is conditioned by the competitive binding of the guanidinium side group with metal cations, as derived from vibrational spectroscopy and modelling of mimetic complexes.
Collapse
Affiliation(s)
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED, Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED, Nijmegen, The Netherlands
| | - Bruno Martínez-Haya
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013, Seville, Spain
| |
Collapse
|
5
|
Becher S, Berden G, Martens J, Oomens J, Heiles S. IRMPD Spectroscopy of [PC (4:0/4:0) + M] + (M = H, Na, K) and Corresponding CID Fragment Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2874-2884. [PMID: 34723538 DOI: 10.1021/jasms.1c00277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glycerophospholipids (GPs) are highly abundant in eukaryotic cells and take part in numerous fundamental physiological processes such as molecular signaling. The GP composition of samples is often analyzed using mass spectrometry (MS), but identification of some structural features, for example, differentiation of stereospecific numbering (sn) isomers by well-established tandem MS (MS2) methods, is challenging. In particular, the formation of 1,3-dioxolane over 1,3-dioxane intermediates proposed to be responsible for the sn-selectivity of these tandem MS strategies has not been validated by spectroscopic methods. In this work, we present infrared multiple photon dissociation (IRMPD) spectra of phosphatidylcholine (PC) ions [PC 4:0/4:0 + H/Na/K]+ and [PC 4:0/4:0 + Na/K - 183]+ fragments generated by electrospray ionization (ESI)-MS and collision-induced dissociation (CID), respectively. IRMPD spectra of protonated, sodiated, and potassiated PC 4:0/4:0 differ in the phosphate- and ester-related bands, which are increasingly shifted to lower wavenumbers with higher adduct masses. Comparison of calculated and experimental IR spectra indicates the presence of multiple, two and one isomer(s) for [PC 4:0/4:0 + H]+, [PC 4:0/4:0 + Na]+, and [PC 4:0/4:0 + K]+, respectively. Isomers exhibiting pronounced sn-1 ester-ion interactions are computationally predicted to be energetically preferred for all species and are in line with experimental results. IRMPD spectra of [PC 4:0/4:0 + Na/K - 183]+ are presented and shed the first light on the fragment ion structures, rationalizing MS-based lipidomics strategies that aim to characterize the sn-isomerism of GPs.
Collapse
Affiliation(s)
- Simon Becher
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Giel Berden
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Jonathan Martens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, 6525 ED Nijmegen, The Netherlands
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
6
|
Gaigeot MP. Some opinions on MD-based vibrational spectroscopy of gas phase molecules and their assembly: An overview of what has been achieved and where to go. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119864. [PMID: 34052762 DOI: 10.1016/j.saa.2021.119864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
We hereby review molecular dynamics simulations for anharmonic gas phase spectroscopy and provide some of our opinions of where the field is heading. With these new directions, the theoretical IR/Raman spectroscopy of large (bio)-molecular systems will be more easily achievable over longer time-scale MD trajectories for an increase in accuracy of the MD-IR and MD-Raman calculated spectra. With the new directions presented here, the high throughput 'decoding' of experimental IR/Raman spectra into 3D-structures should thus be possible, hence advancing e.g. the field of MS-IR for structural characterization by spectroscopy. We also review the assignment of vibrational spectra in terms of anharmonic molecular modes from the MD trajectories, and especially introduce our recent developments based on Graph Theory algorithms. Graph Theory algorithmic is also introduced in this review for the identification of the molecular 3D-structures sampled over MD trajectories.
Collapse
Affiliation(s)
- Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France.
| |
Collapse
|
7
|
Yuan Q, Chomicz-Mańka L, Makurat S, Cao W, Rak J, Wang XB. Photoelectron Spectroscopy and Theoretical Investigations of Gaseous Doubly Deprotonated 2'-Deoxynucleoside 5'-Monophosphate Dianions. J Phys Chem Lett 2021; 12:9463-9469. [PMID: 34558897 DOI: 10.1021/acs.jpclett.1c02678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A better understanding of the mechanism of oxidative DNA damage requires obtaining a molecular level description of nucleotides in various charge states. Herein, we report a systematic photoelectron spectroscopy and theoretical investigation of the electronic and geometric structures of four doubly deprotonated 2'-deoxynucleoside 5'-monophosphate dianions, the smallest quintessential DNA building block. These dianions are intrinsically stable with their adiabatic/vertical detachment energies (ADE/VDE) ranging from 0.85/1.07 (A) and 1.05/1.30 (G) to 1.20/1.50 (C) and 1.80/2.10 eV (T). The repulsive Coulomb barrier against electron detachment is 2.0 eV for purines and 2.5 eV for pyrimidines. Dianions are deprotonated at the phosphate group and the amino group of a nucleobase. The π-type HOMO orbital resides on the nucleobase moiety for each dianion. This spatial distribution of HOMO suggests that the most loosely bound electron is detached along the direction perpendicular to the nucleobase. When combined with the previous results, this work makes complete the depiction of basic building blocks of DNA at the molecular level.
Collapse
Affiliation(s)
- Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Lidia Chomicz-Mańka
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Samanta Makurat
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Wenjin Cao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Janusz Rak
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
8
|
EKİNCİOĞLU Y, KILIÇ HŞ, DERELİ Ö. A DFT/TD-DFT study on the Molecular Structure Absorption and Fluorescence Spectra of Gas/Solution Phases Adenosine 5’–triphosphate Molecule. GAZI UNIVERSITY JOURNAL OF SCIENCE 2021. [DOI: 10.35378/gujs.834249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Greisch JF, van der Laarse SA, Heck AJ. Enhancing Top-Down Analysis Using Chromophore-Assisted Infrared Multiphoton Dissociation from (Phospho)peptides to Protein Assemblies. Anal Chem 2020; 92:15506-15516. [PMID: 33180479 PMCID: PMC7711774 DOI: 10.1021/acs.analchem.0c03412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
Infrared multiphoton dissociation (IRMPD) has been used in mass spectrometry to fragment peptides and proteins, providing fragments mostly similar to collisional activation. Using the 10.6 μm wavelength of a CO2 laser, IRMPD suffers from the relative low absorption cross-section of peptides and small proteins. Focusing on top-down analysis, we investigate different means to tackle this issue. We first reassess efficient sorting of phosphopeptides from nonphosphopeptides based on IR-absorption cross-sectional enhancement by phosphate moieties. We subsequently demonstrate that a myo-inositol hexakisphosphate (IP6) noncovalent adduct can substantially enhance IRMPD for nonphosphopeptides and that this strategy can be extended to proteins. As a natural next step, we show that native phospho-proteoforms of proteins display a distinct and enhanced fragmentation, compared to their unmodified counterparts, facilitating phospho-group site localization. We then evaluate the impact of size on the IRMPD of proteins and their complexes. When applied to protein complexes ranging from a 365 kDa CRISPR-Cas Csy ribonucleoprotein hetero-decamer, a 800 kDa GroEL homo-tetradecamer in its apo-form or loaded with its ATP cofactor, to a 1 MDa capsid-like homo-hexacontamer, we conclude that while phosphate moieties present in crRNA and ATP molecules enhance IRMPD, an increase in the IR cross-section with the size of the protein assembly also favorably accrues dissociation yields. Overall, our work showcases the versatility of IRMPD in the top-down analysis of peptides, phosphopeptides, proteins, phosphoproteins, ribonucleoprotein assemblies, and large protein complexes.
Collapse
Affiliation(s)
- Jean-François Greisch
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, 3584CH Utrecht, The Netherlands
| | - Saar A.M. van der Laarse
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, 3584CH Utrecht, The Netherlands
| | - Albert J.R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, 3584CH Utrecht, The Netherlands
| |
Collapse
|
10
|
Selective adsorption of a new depressant Na2ATP on dolomite: Implications for effective separation of magnesite from dolomite via froth flotation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117278] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Castellani ME, Avagliano D, González L, Verlet JRR. Site-Specific Photo-oxidation of the Isolated Adenosine-5'-triphosphate Dianion Determined by Photoelectron Imaging. J Phys Chem Lett 2020; 11:8195-8201. [PMID: 32886886 DOI: 10.1021/acs.jpclett.0c02089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photoelectron imaging of the isolated adenosine-5'-triphosphate dianion excited to the 1ππ* states reveals that electron emission is predominantly parallel to the polarization axis of the light and arises from subpicosecond electron tunneling through the repulsive Coulomb barrier (RCB). The computed RCB shows that the most probable electron emission site is on the amino group of adenine. This is consistent with the photoelectron imaging: excitation to the 1ππ* states leads to an aligned ensemble distributed predominantly parallel to the long axis of adenine; the subsequent electron tunneling site is along this axis; and the negatively charged phosphate groups guide the outgoing electron mostly along this axis at long range. Imaging of electron tunneling from polyanions combined with computational chemistry may offer a general route for probing the intrinsic photo-oxidation site and dynamics as well as the overall structure of complex isolated species.
Collapse
Affiliation(s)
| | - Davide Avagliano
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
12
|
Berenbeim JA, Wong NGK, Cockett MCR, Berden G, Oomens J, Rijs AM, Dessent CEH. Sodium cationization can disrupt the intramolecular hydrogen bond that mediates the sunscreen activity of oxybenzone. Phys Chem Chem Phys 2020; 22:19522-19531. [PMID: 32840272 DOI: 10.1039/d0cp03152f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A key decay pathway by which organic sunscreen molecules dissipate harmful UV energy involves excited-state hydrogen atom transfer between proximal enol and keto functional groups. Structural modifications of this molecular architecture have the potential to block ultrafast decay processes, and hence promote direct excited-state molecular dissociation, profoundly affecting the efficiency of an organic sunscreen. Herein, we investigate the binding of alkali metal cations to a prototype organic sunscreen molecule, oxybenzone, using IR characterization. Mass-selective IR action spectroscopy was conducted at the free electron laser for infrared experiments, FELIX (600-1800 cm-1), on complexes of Na+, K+ and Rb+ bound to oxybenzone. The IR spectra reveal that K+ and Rb+ adopt binding positions away from the key OH intermolecular hydrogen bond, while the smaller Na+ cation binds directly between the keto and enol oxygens, thus breaking the intramolecular hydrogen bond. UV laser photodissociation spectroscopy was also performed on the series of complexes, with the Na+ complex displaying a distinctive electronic spectrum compared to those of K+ and Rb+, in line with the IR spectroscopy results. TD-DFT calculations reveal that the origin of the changes in the electronic spectra can be linked to rupture of the intramolecular bond in the sodium cationized complex. The implications of our results for the performance of sunscreens in mixtures and environments with high concentrations of metal cations are discussed.
Collapse
Affiliation(s)
- Jacob A Berenbeim
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Natalie G K Wong
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Martin C R Cockett
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK.
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, Nijmegen, The Netherlands
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, Nijmegen, The Netherlands
| | | |
Collapse
|
13
|
Berenbeim JA, Wong NGK, Cockett MCR, Berden G, Oomens J, Rijs AM, Dessent CEH. Unravelling the Keto-Enol Tautomer Dependent Photochemistry and Degradation Pathways of the Protonated UVA Filter Avobenzone. J Phys Chem A 2020; 124:2919-2930. [PMID: 32208697 PMCID: PMC7168606 DOI: 10.1021/acs.jpca.0c01295] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Avobenzone (AB) is
a widely used UVA filter known to undergo irreversible
photodegradation. Here, we investigate the detailed pathways by which
AB photodegrades by applying UV laser-interfaced mass spectrometry
to protonated AB ions. Gas-phase infrared multiple-photon dissociation
(IRMPD) spectra obtained with the free electron laser for infrared
experiments, FELIX, (600–1800 cm–1) are also
presented to confirm the geometric structures. The UV gas-phase absorption
spectrum (2.5–5 eV) of protonated AB contains bands that correspond
to selective excitation of either the enol or diketo forms, allowing
us to probe the resulting, tautomer-dependent photochemistry. Numerous
photofragments (i.e., photodegradants) are directly identified for
the first time, with m/z 135 and
161 dominating, and m/z 146 and
177 also appearing prominently. Analysis of the production spectra
of these photofragments reveals that that strong enol to keto photoisomerism
is occurring, and that protonation significantly disrupts the stability
of the enol (UVA active) tautomer. Close comparison of fragment ion
yields with the TD-DFT-calculated absorption spectra give detailed
information on the location and identity of the dissociative excited
state surfaces, and thus provide new insight into the photodegradation
pathways of avobenzone, and photoisomerization of the wider class
of β-diketone containing molecules.
Collapse
Affiliation(s)
- Jacob A Berenbeim
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Natalie G K Wong
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Martin C R Cockett
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen, 6500 HC, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen, 6500 HC, The Netherlands
| | - Anouk M Rijs
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen, 6500 HC, The Netherlands
| | | |
Collapse
|
14
|
Bakels S, Gaigeot MP, Rijs AM. Gas-Phase Infrared Spectroscopy of Neutral Peptides: Insights from the Far-IR and THz Domain. Chem Rev 2020; 120:3233-3260. [PMID: 32073261 PMCID: PMC7146864 DOI: 10.1021/acs.chemrev.9b00547] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Gas-phase, double
resonance IR spectroscopy has proven to be an
excellent approach to obtain structural information on peptides ranging
from single amino acids to large peptides and peptide clusters. In
this review, we discuss the state-of-the-art of infrared action spectroscopy
of peptides in the far-IR and THz regime. An introduction to the field
of far-IR spectroscopy is given, thereby highlighting the opportunities
that are provided for gas-phase research on neutral peptides. Current
experimental methods, including spectroscopic schemes, have been reviewed.
Structural information from the experimental far-IR spectra can be
obtained with the help of suitable theoretical approaches such as
dynamical DFT techniques and the recently developed Graph Theory.
The aim of this review is to underline how the synergy between far-IR
spectroscopy and theory can provide an unprecedented picture of the
structure of neutral biomolecules in the gas phase. The far-IR signatures
of the discussed studies are summarized in a far-IR map, in order
to gain insight into the origin of the far-IR localized and delocalized
motions present in peptides and where they can be found in the electromagnetic
spectrum.
Collapse
Affiliation(s)
- Sjors Bakels
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| | - Marie-Pierre Gaigeot
- LAMBE CNRS UMR8587, Université d'Evry val d'Essonne, Blvd F. Mitterrand, Bât Maupertuis, 91025 Evry, France
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7-c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
15
|
Avilés-Moreno JR, Berden G, Oomens J, Martínez-Haya B. Insights into the Recognition of Phosphate Groups by Peptidic Arginine from Action Spectroscopy and Quantum Chemical Computations. J Phys Chem B 2019; 123:7528-7535. [PMID: 31449420 DOI: 10.1021/acs.jpcb.9b06201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The side group of the amino acid arginine is typically in its guanidinium protonated form under physiological conditions and participates in a broad range of ligand binding and charge transfer processes of proteins. The recognition of phosphate moieties by guanidinium plays a particularly key role in the interactions of proteins with ATP and nucleic acids. Moreover, it has been recently identified as the driving force for the inhibition of kinase phosphorilation activity by guanidinium derivatives devised as potential anticancer agents. We report on a fundamental investigation of the interactions and coordination arrangements formed by guanidinium with phosphoric, phosphate, and pyrophosphate groups. Action vibrational spectroscopy and ab initio quantum chemical computations are employed to characterize the conformations of benchmark positively charged complexes isolated in an ion trap. The multidentate structure of guanidinium and of the phosphate groups gives rise to a rich conformational landscape with a particular relevance of tweezer-like configurations, where phosphate is effectively trapped by two guanidinium cations. The pyrophosphate complex incorporates a Na+ cation, which serves to compare the interactions associated with the localized versus diffuse charge distributions of the alkali cation and guanidinium, respectively, within a common supramolecular framework.
Collapse
Affiliation(s)
- Juan Ramón Avilés-Moreno
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Bruno Martínez-Haya
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
16
|
Hamlow LA, Nei YW, Wu RR, Gao J, Steill JD, Berden G, Oomens J, Rodgers MT. Impact of Sodium Cationization on Gas-Phase Conformations of DNA and RNA Cytidine Mononucleotides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1758-1767. [PMID: 31286444 DOI: 10.1007/s13361-019-02274-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Gas-phase conformations of the sodium-cationized forms of the 2'-deoxycytidine and cytidine mononucleotides, [pdCyd+Na]+ and [pCyd+Na]+, are examined by infrared multiple photon dissociation action spectroscopy. Complimentary electronic structure calculations at the B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory provide candidate conformations and their respective predicted IR spectra for comparison across the IR fingerprint and hydrogen-stretching regions. Comparisons of the predicted IR spectra and the measured infrared multiple photon dissociation action spectra provide insight into the impact of sodium cationization on intrinsic mononucleotide structure. Further, comparison of present results with those reported for the sodium-cationized cytidine nucleoside analogues elucidates the impact of the phosphate moiety on gas-phase structure. Across the neutral, protonated, and sodium-cationized cytidine mononucleotides, a preference for stabilization of the phosphate moiety and nucleobase orientation is observed, although the details of this stabilization differ with the state of cationization. Several low-energy conformations of [pdCyd+Na]+ and [pCyd+Na]+ involving several different orientations of the phosphate moiety and sugar puckering modes are observed experimentally.
Collapse
Affiliation(s)
- L A Hamlow
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Y-W Nei
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - R R Wu
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - J Gao
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, Netherlands
| | - J D Steill
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA.
| |
Collapse
|
17
|
Galimberti DR, Bougueroua S, Mahé J, Tommasini M, Rijs AM, Gaigeot MP. Conformational assignment of gas phase peptides and their H-bonded complexes using far-IR/THz: IR-UV ion dip experiment, DFT-MD spectroscopy, and graph theory for mode assignment. Faraday Discuss 2019; 217:67-97. [DOI: 10.1039/c8fd00211h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graph theory based vibrational modes as new entities for vibrational THz spectroscopy.
Collapse
Affiliation(s)
| | | | - Jérôme Mahé
- LAMBE UMR8587
- Univ Evry
- Université Paris-Saclay
- CNRS
- 91025 Evry
| | - Matteo Tommasini
- Department of Chemistry, Materials, Chemical Engineering “G. Natta” Politecnico di Milano
- 20133 Milano
- Italy
| | - Anouk M. Rijs
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | | |
Collapse
|