1
|
Rahman A, Saikia B, Baruah A. Binding Interaction Between Two Mutant Myocilin Olfactomedin Domain Monomers in a Homodimer. J Phys Chem B 2024; 128:11893-11903. [PMID: 39571175 DOI: 10.1021/acs.jpcb.4c06782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
In myocilin-associated glaucoma, pathogenic missense mutations accumulate mainly in the olfactomedin domain (mOLF) of myocilin. This makes the protein susceptible to aggregation, where mOLF-mOLF dimerization is possibly an initial stage. Nevertheless, there are no molecular level studies that have probed the nature of interactions occurring between two mOLF domains and the key characteristics of the resulting dimer complex. In this work, we used AlphaFold2 to obtain an I477N mutant mOLF structure with high quality followed by a stable I477N mOLF-mOLF homodimer model using molecular docking combined with molecular dynamics simulations. Moreover, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods coupled with per-residue energy decomposition studies are carried out to identify the key residues involved in the binding interaction. Based on these results, we provide insights into the molecular level understanding of the intermolecular interaction between two mOLF domains in an I477N homodimer. Hydrogen bonds, salt bridges, and favorable van der Waals interactions are observed in the binding interface of the homodimer. Additionally, our results suggest that I477N mutant mOLF aggregation could be a multistep process, beginning with an initial mOLF-mOLF dimerization mainly mediated by residues such as Asp395 and Arg681. Also, the peptides P1 (residues 326-337) and P3 (residues 426-442) of the mOLF domain, previously identified as pertinent for myocilin aggregation, could potentially contribute to a subsequent stage of myocilin aggregation, the first step being mOLF-mOLF dimerization.
Collapse
Affiliation(s)
- Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| |
Collapse
|
2
|
Nguyen S, Jovcevski B, Truong JQ, Pukala TL, Bruning JB. A structural model of the human plasminogen and
Aspergillus fumigatus
enolase complex. Proteins 2022; 90:1509-1520. [DOI: 10.1002/prot.26331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Stephanie Nguyen
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide Adelaide South Australia Australia
| | - Blagojce Jovcevski
- Adelaide Proteomics Centre, School of Physical Sciences The University of Adelaide Adelaide South Australia Australia
- School of Agriculture, Food and Wine The University of Adelaide Adelaide South Australia Australia
| | - Jia Q. Truong
- Adelaide Proteomics Centre, School of Physical Sciences The University of Adelaide Adelaide South Australia Australia
- School of Biological Sciences The University of Adelaide Adelaide South Australia Australia
| | - Tara L. Pukala
- Adelaide Proteomics Centre, School of Physical Sciences The University of Adelaide Adelaide South Australia Australia
| | - John B. Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
3
|
Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 2022; 6:451-469. [PMID: 35702592 PMCID: PMC9185726 DOI: 10.1038/s41570-022-00393-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
The fascination and fear of snakes dates back to time immemorial, with the first scientific treatise on snakebite envenoming, the Brooklyn Medical Papyrus, dating from ancient Egypt. Owing to their lethality, snakes have often been associated with images of perfidy, treachery and death. However, snakes did not always have such negative connotations. The curative capacity of venom has been known since antiquity, also making the snake a symbol of pharmacy and medicine. Today, there is renewed interest in pursuing snake-venom-based therapies. This Review focuses on the chemistry of snake venom and the potential for venom to be exploited for medicinal purposes in the development of drugs. The mixture of toxins that constitute snake venom is examined, focusing on the molecular structure, chemical reactivity and target recognition of the most bioactive toxins, from which bioactive drugs might be developed. The design and working mechanisms of snake-venom-derived drugs are illustrated, and the strategies by which toxins are transformed into therapeutics are analysed. Finally, the challenges in realizing the immense curative potential of snake venom are discussed, and chemical strategies by which a plethora of new drugs could be derived from snake venom are proposed.
Collapse
Affiliation(s)
- Ana L. Oliveira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Matilde F. Viegas
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Saulo L. da Silva
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Andreimar M. Soares
- Biotechnology Laboratory for Proteins and Bioactive Compounds from the Western Amazon, Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Brazil
| | - Maria J. Ramos
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Pedro A. Fernandes
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Jandova Z, Vargiu AV, Bonvin AMJJ. Native or Non-Native Protein-Protein Docking Models? Molecular Dynamics to the Rescue. J Chem Theory Comput 2021; 17:5944-5954. [PMID: 34342983 PMCID: PMC8444332 DOI: 10.1021/acs.jctc.1c00336] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Molecular docking excels at creating a plethora of potential models of protein-protein complexes. To correctly distinguish the favorable, native-like models from the remaining ones remains, however, a challenge. We assessed here if a protocol based on molecular dynamics (MD) simulations would allow distinguishing native from non-native models to complement scoring functions used in docking. To this end, the first models for 25 protein-protein complexes were generated using HADDOCK. Next, MD simulations complemented with machine learning were used to discriminate between native and non-native complexes based on a combination of metrics reporting on the stability of the initial models. Native models showed higher stability in almost all measured properties, including the key ones used for scoring in the Critical Assessment of PRedicted Interaction (CAPRI) competition, namely the positional root mean square deviations and fraction of native contacts from the initial docked model. A random forest classifier was trained, reaching a 0.85 accuracy in correctly distinguishing native from non-native complexes. Reasonably modest simulation lengths of the order of 50-100 ns are sufficient to reach this accuracy, which makes this approach applicable in practice.
Collapse
Affiliation(s)
- Zuzana Jandova
- Computational
Structural Biology Group, Bijvoet Centre for Biomolecular Research,
Faculty of Science—Chemistry, Utrecht
University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Attilio Vittorio Vargiu
- Physics
Department, University of Cagliari, Cittadella
Universitaria, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Alexandre M. J. J. Bonvin
- Computational
Structural Biology Group, Bijvoet Centre for Biomolecular Research,
Faculty of Science—Chemistry, Utrecht
University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
5
|
Ploetz EA, Karunaweera S, Bentenitis N, Chen F, Dai S, Gee MB, Jiao Y, Kang M, Kariyawasam NL, Naleem N, Weerasinghe S, Smith PE. Kirkwood-Buff-Derived Force Field for Peptides and Proteins: Philosophy and Development of KBFF20. J Chem Theory Comput 2021; 17:2964-2990. [PMID: 33878263 DOI: 10.1021/acs.jctc.1c00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new classical nonpolarizable force field, KBFF20, for the simulation of peptides and proteins is presented. The force field relies heavily on the use of Kirkwood-Buff theory to provide a comparison of simulated and experimental Kirkwood-Buff integrals for solutes containing the functional groups common in proteins, thus ensuring intermolecular interactions that provide a good balance between the peptide-peptide, peptide-solvent, and solvent-solvent distributions observed in solution mixtures. In this way, it differs significantly from other biomolecular force fields. Further development and testing of the intermolecular potentials are presented here. Subsequently, rotational potentials for the ϕ/ψ and χ dihedral degrees of freedom are obtained by analysis of the Protein Data Bank, followed by small modifications to provide a reasonable balance between simulated and observed α and β percentages for small peptides. This, the first of two articles, describes in detail the philosophy and development behind KBFF20.
Collapse
Affiliation(s)
- Elizabeth A Ploetz
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Sadish Karunaweera
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Nikolaos Bentenitis
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Feng Chen
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Shu Dai
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Moon B Gee
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Yuanfang Jiao
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Myungshim Kang
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Nilusha L Kariyawasam
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Nawavi Naleem
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | | | - Paul E Smith
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| |
Collapse
|
6
|
Ryberg LA, Sønderby P, Bukrinski JT, Harris P, Peters GHJ. Investigations of Albumin–Insulin Detemir Complexes Using Molecular Dynamics Simulations and Free Energy Calculations. Mol Pharm 2019; 17:132-144. [DOI: 10.1021/acs.molpharmaceut.9b00839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Line A. Ryberg
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pernille Sønderby
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Pernille Harris
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Günther H. J. Peters
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Rational modulator design by exploitation of protein-protein complex structures. Future Med Chem 2019; 11:1015-1033. [PMID: 31141413 DOI: 10.4155/fmc-2018-0433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The horizon of drug discovery is currently expanding to target and modulate protein-protein interactions (PPIs) in globular proteins and intrinsically disordered proteins that are involved in various diseases. To either interrupt or stabilize PPIs, the 3D structure of target protein-protein (or protein-peptide) complexes can be exploited to rationally design PPI modulators (inhibitors or stabilizers) through structure-based molecular design. In this review, we present an overview of experimental and computational methods that can be used to determine 3D structures of protein-protein complexes. Several approaches including rational and in silico methods that can be applied to design peptides, peptidomimetics and small compounds by utilization of determined 3D protein-protein/peptide complexes are summarized and illustrated.
Collapse
|