1
|
Lindkvist TT, Djavani-Tabrizi I, Andersen LH, Nielsen SB. Turning on the Fluorescence from Isolated GFP Chromophore Anions at Cryogenic Temperatures. PHYSICAL REVIEW LETTERS 2025; 134:093001. [PMID: 40131035 DOI: 10.1103/physrevlett.134.093001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/28/2025] [Indexed: 03/26/2025]
Abstract
The chromophore anion derived from the green fluorescent protein is one of the best-studied chromophores in the gas phase, but attempts to measure fluorescence have failed at room temperature. Here we unequivocally show that the chromophore exhibits fluorescence in the gas phase when cooled to low temperatures (<150 K), thereby validating previous hypotheses. The experimental confirmation is enabled by a unique mass-spectroscopy setup, allowing for fluorescence observation near or at the 0-0 transition without inducing heat in the ions upon photon absorption. The low-temperature conditions effectively simulate the restricted motion experienced within the protein, inhibiting internal conversion via a conical intersection along a twist motion coordinate. Fluorescence-excitation experiments at 100 K reveal an absorption-band maximum at 481.6±0.2 nm, while the dispersed fluorescence spectrum shows maximum emission at 483.6±0.5 nm. Remarkably, both values closely resemble those for proteins cooled to 77 K. We estimate that after excitation at the band maximum, radiation is the only pathway back to the ground state. Franck-Condon simulations at the ωB97XD/aug-cc-pVDZ level of theory nicely reproduce the experimental spectra and identify the fluorescent form to be planar, and that an in-plane scissoring mode (80 cm^{-1}) is active for both absorption and emission.
Collapse
Affiliation(s)
| | - Iden Djavani-Tabrizi
- Aarhus University, Department of Physics and Astronomy, DK-8000 Aarhus C, Denmark
| | - Lars Henrik Andersen
- Aarhus University, Department of Physics and Astronomy, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
2
|
Djavani-Tabrizi I, Lindkvist TT, Langeland J, Kjær C, Graham M, Kjaergaard HG, Nielsen SB. Tautomer-Selective Fluorescence Spectroscopy of Oxyluciferin Anions. J Am Chem Soc 2024; 146:26975-26982. [PMID: 39298372 DOI: 10.1021/jacs.4c08596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Bioluminescence in fireflies and related insects arises as emission from the fluorophore oxyluciferin, yet the color of the emission in these insects can range from red to green. The chromophore's microenvironment or multiple tautomeric forms may be responsible for the color tuning; however, these effects are difficult to separate in condensed phases. To investigate the role of oxyluciferin tautomerization in the color tuning mechanism, gas-phase spectroscopy eliminates solvent effects and allows us to study the fluorescence from individual tautomers. Using a home-built mass-spectrometry setup with a cylindrical ion trap cooled with liquid nitrogen, we measure fluorescence from the enol-locked form of oxyluciferin in the gas phase and characterize the photophysics of both keto and enol forms. At 100 K, the enol-locked form has an emission maximum of 564 ± 1 nm, coinciding with a previously reported assignment in oxyluciferin. We measure the absorption spectrum and find a maximum at 560.5 ± 0.5 nm, which implies a Stokes shift of 110 cm-1. The absorption spectrum is compared to Franck-Condon simulated spectra that identify one dominant vibrational mode in the transition. Additionally, we ultimately separated the emission by the enol and keto forms present in the trap by selectively exciting each form. We demonstrate that fluorescence measured close to the 0-0 transition limits the reheating of the ions, thereby providing the coldest ions and therefore the narrowest emission spectra. These experimental data are also crucial benchmarks for computational studies, offering actual emission spectra in the gas phase for both tautomeric forms. Thus, our findings serve as essential reference points for excited-state calculations aimed at understanding the color tuning mechanism of bioluminescence computationally.
Collapse
Affiliation(s)
- Iden Djavani-Tabrizi
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Thomas Toft Lindkvist
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| | - Marlowe Graham
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, Copenhagen Ø DK-2100, Denmark
| | - Steen Brøndsted Nielsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, Aarhus C DK-8000, Denmark
| |
Collapse
|
3
|
Langeland J, Lindkvist TT, Kjær C, Nielsen SB. Gas-phase Förster resonance energy transfer in mass-selected and trapped ions. MASS SPECTROMETRY REVIEWS 2024; 43:477-499. [PMID: 36514825 DOI: 10.1002/mas.21828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Förster Resonance Energy transfer (FRET) is a nonradiative process that may occur from an electronically excited donor to an acceptor when the emission spectrum of the donor overlaps with the absorption spectrum of the acceptor. FRET experiments have been done in the gas phase based on specially designed mass-spectroscopy setups with the goal to obtain structural information on biomolecular ions labeled with a FRET pair (i.e., donor and acceptor dyes) and to shed light on the energy-transfer process itself. Ions are accumulated in a radio-frequency ion trap or a Penning trap where mass selection of those of interest takes place, followed by photoexcitation. Gas-phase FRET is identified from detection of emitted light either from the donor, the acceptor, or both, or from a fragmentation channel that is specific to the acceptor when electronically excited. The challenge associated with the first approach is the collection and detection of photons emitted from a thin ion cloud that is not easily accessible while the second approach relies both on the photophysical and chemical behavior of the acceptor. In this review, we present the different instrumentation used for gas-phase FRET, including a discussion of advantages and disadvantages, and examples on how the technique has provided important structural information that is not easily obtainable otherwise. Furthermore, we describe how the spectroscopic properties of the dyes are affected by nearby electric fields, which is readily discernable from experiments on simple model systems with alkyl or π-conjugated bridges. Such spectral changes can have a significant effect on the FRET efficiency. Ideas for new directions are presented at the end with special focus on cold-ion spectroscopy.
Collapse
Affiliation(s)
- Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | | | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
4
|
Lindkvist TT, Langeland J, Kjær C, Nielsen SB. Empirical Calibration of a Cylindrical Ion Trap for Mass-Selected Gas-Phase Fluorescence Spectroscopy. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:123-130. [PMID: 38079152 DOI: 10.1021/jasms.3c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The ion motion in a quadrupole ion trap of hyperbolic geometry is well described by the Mathieu equations. A simpler cylindrical ion trap has also gained significance and has been used by us for fluorescence-spectroscopy experiments. This design allows for the easy replacement of the end-cap with a mesh, enhancing the photon collection. It is crucial to obtain a firm understanding of the ion motion in cylindrical ion traps and their capability as mass spectrometers. We present here an empirical method of calibrating a cylindrical ion trap based on fluorescence detection. This can be done nearly background-free in a pulsed experiment. The ions are located at the center of the trap, where the field is primarily quadrupolar, and here an effective Mathieu description is found through an effective geometry parameter. In spectroscopy experiments, high buffer-gas pressures are needed to efficiently cool the ions, which complicates the ions' motion and hence their stability. Still, simulations show that the stability diagram closely aligns with the Mathieu diagram, albeit shifted due to collisions. We map the stability diagram for six molecular ions by fluorescence collection from four cations and two anions spanning m/z from 212 to 647. The stability diagram is parametrized through the Mathieu functions with an m/z-dependent effective geometry parameter and a q-dependent shrinkage of the diagram. Based on the calibration, we estimate the mass resolution to be +7/-3 Da for ions with masses in the hundreds of Da.
Collapse
Affiliation(s)
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
5
|
Ashworth EK, Langeland J, Stockett MH, Lindkvist TT, Kjær C, Bull JN, Nielsen SB. Cryogenic Fluorescence Spectroscopy of Ionic Fluorones in Gaseous and Condensed Phases: New Light on Their Intrinsic Photophysics. J Phys Chem A 2022; 126:9553-9563. [PMID: 36529970 DOI: 10.1021/acs.jpca.2c07231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescence spectroscopy of gas-phase ions generated through electrospray ionization is an emerging technique able to probe intrinsic molecular photophysics directly without perturbations from solvent interactions. While there is ample scope for the ongoing development of gas-phase fluorescence techniques, the recent expansion into low-temperature operating conditions accesses a wealth of data on intrinsic fluorophore photophysics, offering enhanced spectral resolution compared with room-temperature measurements, without matrix effects hindering the excited-state dynamics. This perspective reviews current progress on understanding the photophysics of anionic fluorone dyes, which exhibit an unusually large Stokes shift in the gas phase, and discusses how comparison of gas- and condensed-phase fluorescence spectra can fingerprint structural dynamics. The capacity for temperature-dependent measurements of both fluorescence emission and excitation spectra helps establish the foundation for the use of fluorone dyes as fluorescent tags in macromolecular structure determination. We suggest ideas for technique development.
Collapse
Affiliation(s)
- Eleanor K Ashworth
- School of Chemistry, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, Aarhus8000, Denmark
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691Stockholm, Sweden
| | | | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus8000, Denmark
| | - James N Bull
- School of Chemistry, University of East Anglia, NorwichNR4 7TJ, United Kingdom
| | | |
Collapse
|
6
|
Djavani-Tabrizi I, Jockusch RA. Gas-Phase Fluorescence of Proflavine Reveals Two Close-Lying, Brightly Emitting States. J Phys Chem Lett 2022; 13:2187-2192. [PMID: 35230120 DOI: 10.1021/acs.jpclett.2c00201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surprising excitation-dependent, dual emission from a small organic model fluorophore is reported. Gas-phase fluorescence spectra of proflavine (a diaminoacridine) ions reveal two long-lived emitting states, with distinct bands separated by just 1700 cm-1. The relative intensities of these two bands depend on the excitation wavelength. Time-dependent density functional theory (TD-DFT) calculations support the existence of two close-lying singlet electronic states, with excitation into S2 predicted to be >1000-fold more likely than into S1. These data strongly suggest that internal conversion (IC) rates are suppressed relative to solvated proflavine, and that IC is competitive with intramolecular vibrational relaxation (IVR). This work offers an in-depth assessment of the gas-phase photophysics of a simple fluorophore that could open a new pathway to understanding dual emission in fluorophores.
Collapse
Affiliation(s)
| | - Rebecca A Jockusch
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
| |
Collapse
|
7
|
Wu R, Metternich JB, Tiwari P, Zenobi R. Adapting a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for Gas-Phase Fluorescence Spectroscopy Measurement of Trapped Biomolecular Ions. Anal Chem 2021; 93:15626-15632. [PMID: 34784193 DOI: 10.1021/acs.analchem.1c02858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gas-phase fluorescence spectroscopy is still in its infancy, which demands further instrumental developments. In this study, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), equipped with a lab-developed data acquisition system, was coupled to a tunable femtosecond laser and a state-of-the-art optical system for fluorescence studies of mass-selected ions. For excitation, a laser beam was focused (beam size < 1.0 mm) into the cylindrical ICR cell. A wire mesh replaced the back trapping plate, allowing ∼10% of the fluorescence emitted from trapped ions to be collected by a lens installed beside the wire mesh. The collected fluorescence light was then transmitted outside of the mass spectrometer via fiber optics. A novel accumulation during detection (ADD) scheme was developed to increase the duty cycle of gas-phase fluorescence spectroscopy experiments. With ADD, >90% duty cycle for mass spectrometry and fluorescence experiments could be achieved. This instrument was able to perform fluorescence experiments on various ions, from simple rhodamine dyes to large biomolecules (i.e., peptides and proteins) labeled with dyes of various optical properties. A fluorescence lifetime measurement of trapped rhodamine 6G cations was also performed, yielding a value of 5.97 ± 0.23 ns. This setup has a broad mass range and decent fluorescence spectroscopy performance (i.e., the emission spectrum of rhodamine 6G can be acquired with good S/N in a minute). Finally, this setup also allows more challenging gas-phase fluorescence spectroscopy experiments, for example, of low quantum yield fluorophores and large biomolecules in their native state that appear at high m/z, which may not be doable with quadrupole ion traps (QIT).
Collapse
Affiliation(s)
- Ri Wu
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Jonas B Metternich
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Prince Tiwari
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Vogt E, Langeland J, Kjær C, Lindkvist TT, Kjaergaard HG, Nielsen SB. Effect of Freezing out Vibrational Modes on Gas-Phase Fluorescence Spectra of Small Ionic Dyes. J Phys Chem Lett 2021; 12:11346-11352. [PMID: 34780698 DOI: 10.1021/acs.jpclett.1c03259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While action spectroscopy of cold molecular ions is a well-established technique to provide vibrationally resolved absorption features, fluorescence experiments are still challenging. Here we report the fluorescence spectra of pyronin-Y and resorufin ions at 100 K using a newly constructed setup. Spectra narrow upon cooling, and the emission maxima blueshift. Temperature effects are attributed to the population of vibrational excited levels in S1, and that frequencies are lower in S1 than in S0. This picture is supported by calculated spectra based on a Franck-Condon model that not only predicts the observed change in maximum, but also assigns Franck-Condon active vibrations. In-plane vibrational modes that preserve the mirror plane present in both S0 and S1 of resorufin and pyronin Y account for most of the observed vibrational bands. Finally, at low temperatures, it is important to pick an excitation wavelength as far to the red as possible to not reheat the ions.
Collapse
Affiliation(s)
- Emil Vogt
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, Denmark
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, Denmark
| | | | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | | |
Collapse
|
9
|
Giacomozzi L, Kjær C, Brøndsted Nielsen S, Ashworth EK, Bull JN, Stockett MH. Non-statistical fragmentation in photo-activated flavin mononucleotide anions. J Chem Phys 2021; 155:044305. [PMID: 34340366 DOI: 10.1063/5.0056415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The spectroscopy and photo-induced dissociation of flavin mononucleotide anions in vacuo are investigated over the 300-500 nm wavelength range. Comparison of the dependence of fragment ion yields as a function of deposited photon energy with calculated dissociation energies and collision-induced dissociation measurements performed under single-collision conditions suggests that a substantial fraction of photo-activated ions decompose through non-statistical fragmentation pathways. Among these pathways is the dominant photo-induced fragmentation channel, the loss of a fragment identified as formylmethylflavin. The fragment ion specific action spectra reveal electronic transition energies close to those for flavins in solution and previously published gas-phase measurements, although the photo-fragment yield upon excitation of the S2 ← S0 transition appears to be suppressed.
Collapse
Affiliation(s)
| | - Christina Kjær
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | | | - Eleanor K Ashworth
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mark H Stockett
- Department of Physics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Kjær C, Langeland J, Lindkvist TT, Sørensen ER, Stockett MH, Kjaergaard HG, Nielsen SB. A new setup for low-temperature gas-phase ion fluorescence spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:033105. [PMID: 33820085 DOI: 10.1063/5.0038880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Here, we present a new instrument named LUNA2 (LUminescence iNstrument in Aarhus 2), which is purpose-built to measure dispersed fluorescence spectra of gaseous ions produced by electrospray ionization and cooled to low temperatures (<100 K). LUNA2 is, as an earlier room-temperature setup (LUNA), optimized for a high collection efficiency of photons and includes improvements based on our operational experience with LUNA. The fluorescence cell is a cylindrical Paul trap made of copper with a hole in the ring electrode to permit laser light to interact with the trapped ions, and one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The entrance and exit electrodes are both in physical contact with the liquid-nitrogen cooling unit to reduce cooling times. Mass selection is done in a two-step scheme where, first, high-mass ions are ejected followed by low-mass ions according to the Mathieu stability region. This scheme may provide a higher mass resolution than when only one DC voltage is used. Ions are irradiated by visible light delivered from a nanosecond 20-Hz pulsed laser, and dispersed fluorescence is measured with a spectrometer combined with an iCCD camera that allows intensification of the signal for a short time interval. LUNA2 contains an additional Paul trap that can be used for mass selection before ions enter the fluorescence cell, which potentially is relevant to diminishing RF heating in the cold trap. Successful operation of the setup is demonstrated from experiments with rhodamine dyes and oxazine-4, and spectral changes with temperature are identified.
Collapse
Affiliation(s)
- Christina Kjær
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jeppe Langeland
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Emma Rostal Sørensen
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mark H Stockett
- Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | | |
Collapse
|
11
|
Petersen AU, Kjær C, Jensen C, Brøndsted Nielsen M, Brøndsted Nielsen S. Gas‐Phase Ion Fluorescence Spectroscopy of Tailor‐made Rhodamine Homo‐ and Heterodyads: Quenching of Electronic Communication by π‐Conjugated Linkers. Angew Chem Int Ed Engl 2020; 59:20946-20955. [DOI: 10.1002/anie.202008314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Indexed: 01/19/2023]
Affiliation(s)
| | - Christina Kjær
- Department of Physics and Astronomy Aarhus University Denmark
| | - Cecilie Jensen
- Department of Chemistry University of Copenhagen Denmark
| | | | | |
Collapse
|
12
|
Petersen AU, Kjær C, Jensen C, Brøndsted Nielsen M, Brøndsted Nielsen S. Gas‐Phase Ion Fluorescence Spectroscopy of Tailor‐made Rhodamine Homo‐ and Heterodyads: Quenching of Electronic Communication by π‐Conjugated Linkers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Christina Kjær
- Department of Physics and Astronomy Aarhus University Denmark
| | - Cecilie Jensen
- Department of Chemistry University of Copenhagen Denmark
| | | | | |
Collapse
|
13
|
Kjær C, Zhao Y, Stockett MH, Chen L, Hansen K, Nielsen SB. Gas-phase Förster resonance energy transfer in mass-selected ions with methylene or peptide linkers between two dyes: a concerted dance of charges. Phys Chem Chem Phys 2020; 22:11095-11100. [DOI: 10.1039/d0cp01287d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emission from gaseous rhodamine 640 is redshifted when the dye is tethered to rhodamine 575 due to internal Coulomb interaction.
Collapse
Affiliation(s)
- Christina Kjær
- Department of Physics and Astronomy
- Aarhus University
- Denmark
| | - Ying Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | | | - Li Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Klavs Hansen
- Center for Joint Quantum Studies and Department of Physics
- Tianjin University
- 92 Weijin Road
- China
- Department of Physics
| | | |
Collapse
|
14
|
Kung JCK, Forman A, Jockusch RA. The effect of methylation on the intrinsic photophysical properties of simple rhodamines. Phys Chem Chem Phys 2019; 21:10261-10271. [DOI: 10.1039/c9cp00730j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gas-phase studies of progressively methylated rhodamines display unexpected photophysical trends that are obscured in solution, revealing key solvent effects.
Collapse
Affiliation(s)
| | - Adam Forman
- Department of Chemistry, University of Toronto
- Toronto
- Canada
| | | |
Collapse
|
15
|
Kjær C, Nielsen SB. Luminescence spectroscopy of oxazine dye cations isolated in vacuo. Phys Chem Chem Phys 2019; 21:4600-4605. [DOI: 10.1039/c8cp07340f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gas-phase luminescence spectroscopy reveals transition energies of oxazine dye cations with no disturbance from counter ions or solvent molecules.
Collapse
Affiliation(s)
- Christina Kjær
- Department of Physics and Astronomy, Aarhus University
- DK-8000 Aarhus C
- Denmark
| | | |
Collapse
|