1
|
Lafiosca P, Gómez S, Melega L, Giovannini T, Cappelli C. Modeling infrared and vibrational circular dichroism spectra of complex systems: the DFTB/fluctuating charges route. Phys Chem Chem Phys 2025. [PMID: 40377067 DOI: 10.1039/d5cp00228a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Simulating vibrational spectra of large biomolecular systems in aqueous environments remains a challenge in computational chemistry due to the complex interactions between solutes and solvents. In this study, we employ the density functional tight-binding (DFTB) method, coupled with the fluctuating charges (FQ) force field, to simulate infrared (IR) and vibrational circular dichroism (VCD) spectra of solvated large biomolecules. We focus on three representative systems: the doxorubicin/DNA intercalation complex, ubiquitin, and hen egg white lysozyme. By using molecular dynamics (MD) trajectories to sample the conformational space, we compute spectra for multiple snapshots, employing different DFTB Hamiltonians, including SCC-DFTB, DFTB3, and GFN1-xTB. Our results demonstrate the accuracy and computational efficiency of the DFTB/FQ method in reproducing experimental spectral features, particularly for large, solvated systems which cannot be afforded by other ab initio methodologies. The results of this work highlight the potential of DFTB/FQ as a scalable method for simulating vibrational properties in complex molecular systems.
Collapse
Affiliation(s)
- Piero Lafiosca
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy.
| | - Sara Gómez
- Departamento de Química, Universidad Nacional de Colombia, Av. Cra 30 45-03, Bogotá, 111321, Colombia
| | - Luca Melega
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy.
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa, 56124, Italy
| | - Tommaso Giovannini
- Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica, 1, Rome, 00133, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy.
- IMT School for Advanced Studies Lucca, Piazza San Francesco, 19, Lucca, 55100, Italy
| |
Collapse
|
2
|
Forson E, Parsons T, Caricato M. First Principles Simulations of Optical Rotation of Chiral Molecular Crystals. Chirality 2024; 36:e23709. [PMID: 39101242 DOI: 10.1002/chir.23709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
In this work, we present simulations of the optical rotation (OR) for five molecular crystals at density functional theory level with periodic boundary conditions (DFT-PBC). Calculations are compared with experimental measurements and show semi-quantitative agreement with experimental data for three of the crystals: tartatic acid, benzil, and pentaerythritol. For the other two crystals, aspartic acid and glutamic acid, the calculated data are in qualitative agreement with, but two orders of magnitude smaller than, the experimental data. We provide some arguments that support the theoretical predictions and suggest that the experiments should be revisited. We also find that the position of H centers provided in experimental X-ray data is not sufficiently reliable for simulating OR, and better results are obtained when H atoms are allowed to relax while keeping heavier elements fixed at the experimental positions. Comparison with molecular cluster calculations with a better functional and a larger basis set indicate that the role of intermolecular interactions (reproduced with the PBC technique) is as or more important than the choice of model chemistry. Despite the current limitations in the level of theory that can be employed, these simulations provide a promising avenue to investigate the effect of intermolecular interactions on this sensitive electronic property of molecules and materials.
Collapse
Affiliation(s)
- Emmanuel Forson
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Taylor Parsons
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Marco Caricato
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
3
|
Sepali C, Gómez S, Grifoni E, Giovannini T, Cappelli C. Computational Spectroscopy of Aqueous Solutions: The Underlying Role of Conformational Sampling. J Phys Chem B 2024; 128:5083-5091. [PMID: 38733374 DOI: 10.1021/acs.jpcb.4c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Fully atomistic multiscale polarizable quantum mechanics (QM)/molecular mechanics (MM) approaches, combined with techniques to sample the solute-solvent phase space, constitute the most accurate method to compute spectral signals in aqueous solution. Conventional sampling strategies, such as classical molecular dynamics (MD), may encounter drawbacks when the conformational space is particularly complex, and transition barriers between conformers are high. This can lead to inaccurate sampling, which can potentially impact the accuracy of spectral calculations. For this reason, in this work, we compare classical MD with enhanced sampling techniques, i.e., replica exchange MD and metadynamics. In particular, we show how the different sampling techniques affect computed UV, electronic circular dichroism, nuclear magnetic resonance shielding, and optical rotatory dispersion of N-acetylproline-amide in aqueous solution. Such a system is a model peptide characterized by complex conformational variability. Calculated values suggest that spectral properties are influenced by solute conformers, relative population, and solvent effects; therefore, particular care needs to be paid for when choosing the sampling technique.
Collapse
Affiliation(s)
- Chiara Sepali
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sara Gómez
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Emanuele Grifoni
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
4
|
Gómez S, Ambrosetti M, Giovannini T, Cappelli C. Close-Up Look at Electronic Spectroscopic Signatures of Common Pharmaceuticals in Solution. J Phys Chem B 2024; 128:2432-2446. [PMID: 38416564 DOI: 10.1021/acs.jpcb.3c07795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Simulating electronic properties and spectral signals requires robust computational approaches that need tuning with the system's peculiarities. In this paper, we test implicit and fully atomistic solvation models for the calculation of UV-vis and electronic circular dichroism (ECD) spectra of two pharmaceutically relevant molecules, namely, (2S)-captopril and (S)-naproxen, dissolved in aqueous solution. Room temperature molecular dynamics simulations reveal that these two drugs establish strong contacts with the surrounding solvent molecules via hydrogen bonds. Such specific interactions, which play a major role in the spectral response and are neglected in implicit approaches, are further characterized and quantified with natural bond orbital methods. Our calculations show that simulated spectra, and especially ECD, are in good agreement with experiments solely when conformational and configurational dynamics, mutual polarization, and solute-solvent repulsion effects are considered.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Matteo Ambrosetti
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa 56126, Italy
| |
Collapse
|
5
|
Sepali C, Lafiosca P, Gómez S, Giovannini T, Cappelli C. Effective fully polarizable QM/MM approaches to compute Raman and Raman Optical Activity spectra in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123485. [PMID: 37827000 DOI: 10.1016/j.saa.2023.123485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Raman and Raman Optical Activity (ROA) signals are amply affected by solvent effects, especially in the presence of strongly solute-solvent interactions such as Hydrogen Bonding (HB). In this work, we extend the fully atomistic polarizable Quantum Mechanics/Molecular Mechanics approach, based on the Fluctuating Charges and Fluctuating Dipoles force field to the calculation of Raman and ROA spectra. Such an approach is able to accurately describe specific HB interactions, by also accounting for anisotropic contributions due to the inclusion of fluctuating dipoles. To highlight the potentiality of the novel approach, Raman and ROA spectra of L-Serine and L-Cysteine dissolved in aqueous solution are computed and compared both with alternative theoretical approaches and experimental measurements.
Collapse
Affiliation(s)
- Chiara Sepali
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy
| | - Piero Lafiosca
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy
| | - Sara Gómez
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri, 7, Pisa, 56126, Italy.
| |
Collapse
|
6
|
Parsons T, Balduf T, Caricato M. On the choice of coordinate origin in length gauge optical rotation calculations. Chirality 2023; 35:708-717. [PMID: 37137811 DOI: 10.1002/chir.23575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
In this work, we explore the issue of origin dependence in optical rotation (OR) calculations in the length dipole gauge (LG) using standard approximate methods belonging to density functional theory (DFT) and coupled cluster (CC) theory. We use the origin-invariant LG approach, LG(OI), that we recently proposed as reference for the calculations, and we study whether a proper choice of coordinate origin and molecular orientation can be made such that diagonal elements of the LG-OR tensor match those of the LG(OI) tensor. Using a numerical search algorithm, we show that multiple spatial orientations can be found where the LG and LG(OI) results match. However, a simple analytical procedure provides a spatial orientation where the origin of the coordinate system is close to the center of mass of the molecule. At the same time, we also show that putting the origin at the center of mass is not an ideal choice for every molecule (relative errors in the OR up to 70% can be obtained in out test set). Finally, we show that the choice of coordinate origin based on the analytical procedure is transferable across different methods and it is superior to putting the origin in the center of mass or center of nuclear charge. This is important because the LG(OI) approach is trivial to implement for DFT, but not necessarily for nonvariational methods in the CC family. Therefore, one can determine an optimal coordinate origin at DFT level and use it for standard LG-CC response calculations.
Collapse
Affiliation(s)
- Taylor Parsons
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Ty Balduf
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Marco Caricato
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
7
|
Lemler PM, Craft CL, Pollok CH, Regan TP, Vaccaro PH. Isolated and solvated chiroptical behavior in conformationally flexible butanamines. Chirality 2023; 35:586-618. [PMID: 37550220 DOI: 10.1002/chir.23570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 08/09/2023]
Abstract
The nonresonant optical activity of two highly flexible aliphatic amines, (2R)-3-methyl-2-butanamine (R-MBA) and (2R)-(3,3)-dimethyl-2-butanamine (R-DMBA), has been probed under isolated and solvated conditions to examine the roles of conformational isomerism and to explore the influence of extrinsic perturbations. The optical rotatory dispersion (ORD) measured in six solvents presented uniformly negative rotatory powers over the 320-590 nm region, with the long-wavelength magnitude of chiroptical response growing nearly monotonically as the dielectric constant of the surroundings diminished. The intrinsic specific optical rotation,α λ T (in deg dm-1 [g/mL]-1 ), extracted for ambient vapor-phase samples of R-MBA [-11.031(98) and -2.29 (11)] and R-DMBA [-9.434 (72) and -1.350 (48)] at 355 and 633 nm were best reproduced by counterintuitive solvents of high polarity (yet low polarizability) like acetonitrile and methanol. Attempts to interpret observed spectral signatures quantitatively relied on the linear-response frameworks of density-functional theory (B3LYP, cam-B3LYP, and dispersion-corrected analogs) and coupled-cluster theory (CCSD), with variants of the polarizable continuum model (PCM) deployed to account for the effects of implicit solvation. Building on the identification of several low-lying equilibrium geometries (nine for R-MBA and three for R-DMBA), ensemble-averaged ORD profiles were calculated at T = 300 K by means of the independent-conformer ansatz, which enabled response properties predicted for the optimized structure of each isomer to be combined through Boltzmann-weighted population fractions derived from corresponding relative internal-energy or free-energy values, the latter of which stemmed from composite CBS-APNO and G4 analyses. Although reasonable accord between theory and experiment was realized for the isolated (vapor-phase) species, the solution-phase results were less satisfactory and tended to degrade progressively as the solvent polarity increased. These trends were attributed to solvent-mediated changes in structural parameters and energy metrics for the transition states that separate and putatively isolate the equilibrium conformations supported by the ground electronic potential-energy surface, with the resulting displacement of barrier locations and/or decrease of barrier heights compromising the underlying premise of the independent-conformer ansatz.
Collapse
Affiliation(s)
- Paul M Lemler
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Intel Corporation, Hillsboro, Oregon, USA
| | - Clayton L Craft
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- United States Air Force Research Laboratory, Rome, New York, USA
| | - Corina H Pollok
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Organische Chemie II, Ruhr-Universität Bochum, Bochum, Germany
| | - Thomas P Regan
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Patrick H Vaccaro
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Sorfleet JT, Shin JW. Polarimetry study of the intrinsic rotation of (1R,4R)-(+)-camphor in organic solvents. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Giovannini T, Marrazzini G, Scavino M, Koch H, Cappelli C. Integrated Multiscale Multilevel Approach to Open Shell Molecular Systems. J Chem Theory Comput 2023; 19:1446-1456. [PMID: 36780359 PMCID: PMC10018740 DOI: 10.1021/acs.jctc.2c00805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
We present a novel multiscale approach to study the electronic structure of open shell molecular systems embedded in an external environment. The method is based on the coupling of multilevel Hartree-Fock (MLHF) and Density Functional Theory (MLDFT), suitably extended to the unrestricted formalism, to Molecular Mechanics (MM) force fields (FF). Within the ML region, the system is divided into active and inactive parts, thus describing the most relevant interactions (electrostatic, polarization, and Pauli repulsion) at the quantum level. The surrounding MM part, which is formulated in terms of nonpolarizable or polarizable FFs, permits a physically consistent treatment of long-range electrostatics and polarization effects. The approach is extended to the calculation of hyperfine coupling constants and applied to selected nitroxyl radicals in an aqueous solution.
Collapse
Affiliation(s)
| | - Gioia Marrazzini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marco Scavino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Henrik Koch
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.,Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
10
|
Gómez S, Giovannini T, Cappelli C. Multiple Facets of Modeling Electronic Absorption Spectra of Systems in Solution. ACS PHYSICAL CHEMISTRY AU 2022; 3:1-16. [PMID: 36718266 PMCID: PMC9881242 DOI: 10.1021/acsphyschemau.2c00050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
In this Perspective, we outline the essential physicochemical aspects that need to be considered when building a reliable approach to describe absorption properties of solvated systems. In particular, we focus on how to properly model the complexity of the solvation phenomenon, arising from dynamical aspects and specific, strong solute-solvent interactions. To this end, conformational and configurational sampling techniques, such as Molecular Dynamics, have to be coupled to accurate fully atomistic Quantum Mechanical/Molecular Mechanics (QM/MM) methodologies. By exploiting different illustrative applications, we show that an effective reproduction of experimental spectral signals can be achieved by delicately balancing exhaustive sampling, hydrogen bonding, mutual polarization, and nonelectrostatic effects.
Collapse
|
11
|
Gómez S, Bottari C, Egidi F, Giovannini T, Rossi B, Cappelli C. Amide Spectral Fingerprints are Hydrogen Bonding-Mediated. J Phys Chem Lett 2022; 13:6200-6207. [PMID: 35770492 PMCID: PMC9272440 DOI: 10.1021/acs.jpclett.2c01277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The origin of the peculiar amide spectral features of proteins in aqueous solution is investigated, by exploiting a combined theoretical and experimental approach to study UV Resonance Raman (RR) spectra of peptide molecular models, namely N-acetylglycine-N-methylamide (NAGMA) and N-acetylalanine-N-methylamide (NALMA). UVRR spectra are recorded by tuning Synchrotron Radiation at several excitation wavelengths and modeled by using a recently developed multiscale protocol based on a polarizable QM/MM approach. Thanks to the unparalleled agreement between theory and experiment, we demonstrate that specific hydrogen bond interactions, which dominate hydration dynamics around these solutes, play a crucial role in the selective enhancement of amide signals. These results further argue the capability of vibrational spectroscopy methods as valuable tools for refined structural analysis of peptides and proteins in aqueous solution.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Cettina Bottari
- Elettra
Sincrotrone Trieste S.C.p.A., S. S. 14 Km 163.5 in Area Science Park, I-34149, Trieste, Italy
| | - Franco Egidi
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Tommaso Giovannini
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Barbara Rossi
- Elettra
Sincrotrone Trieste S.C.p.A., S. S. 14 Km 163.5 in Area Science Park, I-34149, Trieste, Italy
- Department
of Physics, University of Trento, via Sommarive 14, I-38123 Povo, Trento, Italy
| | - Chiara Cappelli
- Scuola
Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| |
Collapse
|
12
|
Computational hints for the simultaneous spectroscopic detection of common contaminants in water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Parsons T, Balduf T, Cheeseman JR, Caricato M. Basis Set Dependence of Optical Rotation Calculations with Different Choices of Gauge. J Phys Chem A 2022; 126:1861-1870. [PMID: 35271772 DOI: 10.1021/acs.jpca.2c00201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, the basis set dependence of optical rotation (OR) calculations is examined for various choices of gauge/level of theory. The OR is calculated for a set of 50 molecules using B3LYP and CAM-B3LYP and 17 molecules using coupled cluster with single and double excitations (CCSD). The calculations employ the correlation-consistent basis sets, aug-cc-pVζZ with ζ = D, T, Q. An inverse-power extrapolation formula is then utilized to obtain OR values at the complete basis set (CBS) limit. We investigate the basis set convergence for these methods and three choices of gauge: length gauge (with gauge-including atomic orbitals, LG(GIAOs), for DFT), the origin-invariant length gauge [LG(OI)], and the modified velocity gauge (MVG). The results show that all methods converge smoothly to the CBS limit and that the LG(OI) approach has a slightly faster convergence rate than the other choices of gauge. While the DFT methods reach gauge invariance at the CBS limit, CCSD does not. The significant difference between the MVG and LG(OI) results at the CBS limit, 26%, indicates that CCSD is not quite at convergence in the description of electron correlation for this property. On the other hand, gauge invariance at the CBS limit for DFT does not lead to the same OR values for the two density functionals, which is also due to electron correlation incompleteness. A limited comparison to gas-phase experimental OR values for the DFT methods shows that CAM-B3LYP seems more accurate than B3LYP. Overall, this study shows that the LG(OI) approach with the aug-cc-pVTZ basis set for DFT, and with the CBS(DT) extrapolation for CCSD, provides a good cost/accuracy balance.
Collapse
Affiliation(s)
- Taylor Parsons
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Ty Balduf
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James R Cheeseman
- Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Marco Caricato
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
14
|
Lafiosca P, Gómez S, Giovannini T, Cappelli C. Absorption Properties of Large Complex Molecular Systems: The DFTB/Fluctuating Charge Approach. J Chem Theory Comput 2022; 18:1765-1779. [PMID: 35184553 PMCID: PMC8908768 DOI: 10.1021/acs.jctc.1c01066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
We report on the
first formulation of a novel polarizable QM/MM
approach, where the density functional tight binding (DFTB) is coupled
to the fluctuating charge (FQ) force field. The resulting method (DFTB/FQ)
is then extended to the linear response within the TD-DFTB framework
and challenged to study absorption spectra of large condensed-phase
systems.
Collapse
Affiliation(s)
- Piero Lafiosca
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Chiara Cappelli
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
15
|
Benchmarking study on calculation of specific optical rotation of rigid chiral molecules in solution: 1:1 solute-solvent complex with PCM solvation model. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Bohle F, Seibert J, Grimme S. Automated Quantum Chemistry-Based Calculation of Optical Rotation for Large Flexible Molecules. J Org Chem 2021; 86:15522-15531. [PMID: 34612629 DOI: 10.1021/acs.joc.1c02008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calculation of optical rotation (OR, [α]D) for nonrigid molecules was limited to small systems due to the challenging problem of generating reliable conformer ensembles, calculating accurate Boltzmann populations and the extreme sensitivity of the OR to the molecules' three-dimensional structure. Herein, we describe and release the crenso workflow for the automated computation of conformer ensembles in solution and corresponding [α]D values for flexible molecules. A comprehensive set of 28 organic drug molecules (28-144 atoms) with experimentally determined values is used in our assessment. In all cases, the correct OR sign is obtained with an overall mean relative deviation of 72% (mean absolute deviation of 82 °[dm(g/cm3)]-1 for experimental values in the range -160 to 287 °[dm(g/cm3)]-1). We show that routine [α]D computations for very flexible, biologically active molecules are both feasible and reproducible in about a day of computation time on a standard workstation computer. Furthermore, we observed that the effect of energetically higher-lying structures in the ensemble on the OR is often averaged out and that in 23 out of 28 cases, the correct OR sign is obtained by just considering only the lowest free energy conformer. In four example cases, we show that the approach can also describe the OR of pairs of flexible diastereomers properly. In summary, even very sensitive, multifactorial physicochemical properties appear reliably predictable with minimal user input from efficiently automated quantum chemical methods.
Collapse
Affiliation(s)
- Fabian Bohle
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Jakob Seibert
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| |
Collapse
|
17
|
Uribe L, Gómez S, Giovannini T, Egidi F, Restrepo A. An efficient and robust procedure to calculate absorption spectra of aqueous charged species applied to NO 2. Phys Chem Chem Phys 2021; 23:14857-14872. [PMID: 34223573 DOI: 10.1039/d1cp00652e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accurate calculation of absorption spectra of aqueous NO2- requires rigorously sampling the quantum potential energy surfaces for microsolvation of NO2- with at least five explicit water molecules and embedding the resulting clusters in a continuum solvent accounting for the statistical weighted contributions of individual isomers. This method, which we address as ASCEC + PCM, introduces several desired features when compared against MD simulations derived QM/MM spectra: comparatively fewer explicit solvent molecules to be treated with expensive QM methods, the identification of equilibrium structures in the quantum PES to be used in further vibrational spectroscopy, and the unequivocal identification of cluster orbitals undergoing electronic transitions and charge transfer that originate the spectral bands.
Collapse
Affiliation(s)
- Lina Uribe
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Tommaso Giovannini
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Franco Egidi
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
| | - Albeiro Restrepo
- Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
18
|
Krupp A, Noll M, Reggelin M. Valine derived poly (acetylenes) as versatile chiral lyotropic liquid crystalline alignment media for RDC-based structure elucidations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:577-586. [PMID: 32012341 DOI: 10.1002/mrc.5003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Anisotropic samples of lyotropic liquid crystalline (LLC) phases of valine derived polyaryl acetylenes were employed as chiral alignment media for the measurement of residual dipolar couplings (RDCs) of 12 small, chiral, organic molecules. The quadrupolar splitting of the deuterium signal of CDCl3 can be adjusted by temperature and concentration changes from 0 to 350 Hz. The LLC phases showed excellent orienting properties for all analytes bearing various functional groups. The precise extraction of RDCs in the range of up to ±30 Hz from F2-coupled HSQC spectra was possible. Additionally, the chiral environment led to diastereomorphous interactions with the enantiomers of chiral analytes leading to two different sets of RDCs. This differential order effect was particularly pronounced with H-bond donors like alcohols and 2° amines.
Collapse
Affiliation(s)
- Alexis Krupp
- Clemens Schöpf Institut for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Nitrochemie Aschau GmbH, Aschau am Inn, Germany
| | - Markus Noll
- Clemens Schöpf Institut for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Michael Reggelin
- Clemens Schöpf Institut for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
19
|
D'Cunha R, Crawford TD. Modeling Complex Solvent Effects on the Optical Rotation of Chiral Molecules: A Combined Molecular Dynamics and Density Functional Theory Study. J Phys Chem A 2021; 125:3095-3108. [PMID: 33829790 DOI: 10.1021/acs.jpca.1c00803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The challenge of assigning the absolute stereochemical configuration to a chiral compound can be overcome via accurate ab initio predictions of optical rotation, a sensitive molecular property that is further complicated by solvent effects. The solvent's "chiral imprint"-the transfer of the chirality from the solute to the surrounding achiral solvent-is explored here using conformational averaging and time-dependent density-functional theory. These complex solvent effects are taken into account via simple averaging over a molecular dynamics trajectory together with the explicit quantum mechanical consideration of the solvent molecules within the solute's cybotactic region and implicit modeling of the bulk solvent. We consider several axes along which the system's optical rotation varies, including the sampling of the dynamical trajectory, the quality of the one-electron basis set, and the use of continuum solvent models to account for bulk effects.
Collapse
Affiliation(s)
- Ruhee D'Cunha
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - T Daniel Crawford
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.,Molecular Sciences Software Institute, 1880 Pratt Drive, Suite 1100, Blacksburg, Virginia 24060, United States
| |
Collapse
|
20
|
Skoko S, Ambrosetti M, Giovannini T, Cappelli C. Simulating Absorption Spectra of Flavonoids in Aqueous Solution: A Polarizable QM/MM Study. Molecules 2020; 25:E5853. [PMID: 33322361 PMCID: PMC7764712 DOI: 10.3390/molecules25245853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022] Open
Abstract
We present a detailed computational study of the UV/Vis spectra of four relevant flavonoids in aqueous solution, namely luteolin, kaempferol, quercetin, and myricetin. The absorption spectra are simulated by exploiting a fully polarizable quantum mechanical (QM)/molecular mechanics (MM) model, based on the fluctuating charge (FQ) force field. Such a model is coupled with configurational sampling obtained by performing classical molecular dynamics (MD) simulations. The calculated QM/FQ spectra are compared with the experiments. We show that an accurate reproduction of the UV/Vis spectra of the selected flavonoids can be obtained by appropriately taking into account the role of configurational sampling, polarization, and hydrogen bonding interactions.
Collapse
Affiliation(s)
- Sulejman Skoko
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; (S.S.); (M.A.)
| | - Matteo Ambrosetti
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; (S.S.); (M.A.)
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway;
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; (S.S.); (M.A.)
| |
Collapse
|
21
|
Marrazzini G, Giovannini T, Egidi F, Cappelli C. Calculation of Linear and Non-linear Electric Response Properties of Systems in Aqueous Solution: A Polarizable Quantum/Classical Approach with Quantum Repulsion Effects. J Chem Theory Comput 2020; 16:6993-7004. [PMID: 33058671 PMCID: PMC8015238 DOI: 10.1021/acs.jctc.0c00674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 01/10/2023]
Abstract
We present a computational study of polarizabilities and hyperpolarizabilities of organic molecules in aqueous solutions, focusing on solute-water interactions and the way they affect a molecule's linear and non-linear electric response properties. We employ a polarizable quantum mechanics/molecular mechanics (QM/MM) computational model that treats the solute at the QM level while the solvent is treated classically using a force field that includes polarizable charges and dipoles, which dynamically respond to the solute's quantum-mechanical electron density. Quantum confinement effects are also treated by means of a recently implemented method that endows solvent molecules with a parametric electron density, which exerts Pauli repulsion forces upon the solute. By applying the method to a set of aromatic molecules in solution we show that, for both polarizabilities and first hyperpolarizabilities, observed solution values are the result of a delicate balance between electrostatics, hydrogen-bonding, and non-electrostatic solute solvent interactions.
Collapse
Affiliation(s)
- Gioia Marrazzini
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Tommaso Giovannini
- Department
of Chemistry, Norwegian University of Science
and Technology, Trondheim 7491, Norway
| | - Franco Egidi
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
| | - Chiara Cappelli
- Scuola
Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy
| |
Collapse
|
22
|
Giovannini T, Egidi F, Cappelli C. Theory and algorithms for chiroptical properties and spectroscopies of aqueous systems. Phys Chem Chem Phys 2020; 22:22864-22879. [PMID: 33043930 DOI: 10.1039/d0cp04027d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chiroptical properties and spectroscopies are valuable tools to study chiral molecules and assign absolute configurations. The spectra that result from chiroptical measurements may be very rich and complex, and hide much of their information content. For this reason, the interplay between experiments and calculations is especially useful, provided that all relevant physico-chemical interactions that are present in the experimental sample are accurately modelled. The inherent difficulty associated to the calculation of chiral signals of systems in aqueous solutions requires the development of specific tools, able to account for the peculiarities of water-solute interactions, and especially its ability to form hydrogen bonds. In this perspective we discuss a multiscale approach, which we have developed and challenged to model the most used chiroptical techniques.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | | | | |
Collapse
|
23
|
Lu JM, Yang BB, Li L. Specific Optical Rotation and Absolute Configuration of Flexible Molecules Containing a 2-Methylbutyl Residue. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jia-Min Lu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; 100050 Beijing China
| | - Bei-Bei Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; 100050 Beijing China
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; 100050 Beijing China
| |
Collapse
|
24
|
Giovannini T, Egidi F, Cappelli C. Molecular spectroscopy of aqueous solutions: a theoretical perspective. Chem Soc Rev 2020; 49:5664-5677. [PMID: 32744278 DOI: 10.1039/c9cs00464e] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Computational spectroscopy is an invaluable tool to both accurately reproduce the spectra of molecular systems and provide a rationalization for the underlying physics. However, the inherent difficulty to accurately model systems in aqueous solutions, owing to water's high polarity and ability to form hydrogen bonds, has severely hampered the development of the field. In this tutorial review we present a technique developed and tested in recent years based on a fully atomistic and polarizable classical modeling of water coupled with a quantum mechanical description of the solute. Thanks to its unparalleled accuracy and versatility, this method can change the perspective of computational and experimental chemists alike.
Collapse
Affiliation(s)
| | - Franco Egidi
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| |
Collapse
|
25
|
Gómez S, Giovannini T, Cappelli C. Absorption spectra of xanthines in aqueous solution: a computational study. Phys Chem Chem Phys 2020; 22:5929-5941. [PMID: 32115599 DOI: 10.1039/c9cp05420k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present a detailed computational analysis of the UV/Vis spectra of caffeine, paraxanthine and theophylline in aqueous solution. A hierarchy of solvation approaches for modeling the aqueous environment have been tested, ranging from the continuum model to the non-polarizable and polarizable quantum mechanical (QM)/molecular mechanics (MM) models, with and without the explicit inclusion of water molecules in the QM portion. The computed results are directly compared with the experimental data, thus highlighting the role of electrostatic, polarization and hydrogen boding solute-solvent interactions.
Collapse
Affiliation(s)
- Sara Gómez
- Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| | | | | |
Collapse
|
26
|
Giovannini T, Riso RR, Ambrosetti M, Puglisi A, Cappelli C. Electronic transitions for a fully polarizable QM/MM approach based on fluctuating charges and fluctuating dipoles: Linear and corrected linear response regimes. J Chem Phys 2019; 151:174104. [PMID: 31703497 DOI: 10.1063/1.5121396] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The fully polarizable Quantum Mechanics/Molecular Mechanics (QM/MM) approach based on fluctuating charges and fluctuating dipoles, named QM/FQFμ [T. Giovannini et al., J. Chem. Theory Comput. 15, 2233 (2019)], is extended to the calculation of vertical excitation energies of solvated molecular systems. Excitation energies are defined within two different solvation regimes, i.e., linear response (LR), where the response of the MM portion is adjusted to the QM transition density, and corrected-Linear Response (cLR) in which the MM response is adjusted to the relaxed QM density, thus being able to account for charge equilibration in the excited state. The model, which is specified in terms of three physical parameters (electronegativity, chemical hardness, and polarizability) is applied to vacuo-to-water solvatochromic shifts of aqueous solutions of para-nitroaniline, pyridine, and pyrimidine. The results show a good agreement with their experimental counterparts, thus highlighting the potentialities of this approach.
Collapse
Affiliation(s)
- Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | | | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
27
|
Di Remigio R, Giovannini T, Ambrosetti M, Cappelli C, Frediani L. Fully Polarizable QM/Fluctuating Charge Approach to Two-Photon Absorption of Aqueous Solutions. J Chem Theory Comput 2019; 15:4056-4068. [DOI: 10.1021/acs.jctc.9b00305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Luca Frediani
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
28
|
Peyton BG, Crawford TD. Basis Set Superposition Errors in the Many-Body Expansion of Molecular Properties. J Phys Chem A 2019; 123:4500-4511. [DOI: 10.1021/acs.jpca.9b03864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Benjamin G. Peyton
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - T. Daniel Crawford
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
29
|
Johnson J, Polavarapu PL. Chiral Molecular Structures of Substituted Indans: Ring Puckering, Rotatable Substituents, and Vibrational Circular Dichroism. ACS OMEGA 2019; 4:4963-4976. [PMID: 31459680 PMCID: PMC6648482 DOI: 10.1021/acsomega.8b03628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/21/2019] [Indexed: 05/06/2023]
Abstract
The chiral molecular structures of four different substituted indans, namely, (S)-1-methylindan, (R)-1-methylindan-1-d, (R)-1-aminoindan, and (S)-1-indanol, were investigated using experimental vibrational absorption and vibrational circular dichroism spectra and corresponding spectra predicted using quantum chemical (QC) calculations. All of these molecules possess two ring puckering conformations, with ring puckering leading to the pseudoequatorial substituent being approximately four times more abundant over that leading to the pseudoaxial substituent. The amino group in 1-aminoindan has three conformations arising from the rotation of NH2 group, for each ring puckering conformation, resulting in a total of six conformations. Whereas 1-indanol in the nonhydrogen-bonding solvent CCl4 also has six conformations similar to those of 1-aminoindan, 1-indanol in the hydrogen-bonding solvent DMSO-d 6 adopts numerous conformations, of which 30 conformers are considered to have at least ∼1% or more population. In DMSO solution, ring puckering leading to pseudoequatorial substituent accounts for 77% population and 23% for pseudoaxial substituent. The QC spectra predicted for the geometry optimized conformers are found to be in excellent quantitative agreement with corresponding experimental spectra in all of the molecules considered. The procedures suggested in this work are hoped to provide successful pathways for future chiral molecular structural analyses.
Collapse
|
30
|
Puglisi A, Giovannini T, Antonov L, Cappelli C. Interplay between conformational and solvent effects in UV-visible absorption spectra: curcumin tautomers as a case study. Phys Chem Chem Phys 2019; 21:15504-15514. [PMID: 31259324 DOI: 10.1039/c9cp00907h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We present a combined theoretical and experimental study on the UV-vis spectra of enol-keto (EK) and keto-keto (KK) tautomeric forms of curcumin dissolved in aqueous solution. Solvent effects have been investigated by resorting to the implicit polarizable continuum model (QM/PCM) and non-polarizable and fully polarizable QM/MM approaches, the latter based on the fluctuating charges (FQ) force-field. In particular, all methods are challenged to rationalize the contribution of conformational, electrostatic and polarization effects in the calculation of the vertical excitation spectra of curcumin tautomers. The obtained results highlight that for both tautomers specific solute-solvent hydrogen-bond interactions play a minor role with respect to conformational and electrostatic effects.
Collapse
Affiliation(s)
| | | | - Liudmil Antonov
- Bulgarian Academy of Sciences, Institute of Organic Chemistry with Centre of Phytochemistry, Acad. G. Bonchev str., Bldg. 9, Sofia 1113, Bulgaria
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|