1
|
Verma P, Mathew R, Dhiman N, Mitra PK, Lakshmanna YA. Ultrafast excited-state dynamics of 4-hydroxychalcone: role of intramolecular charge transfer and photoacidity. Phys Chem Chem Phys 2025; 27:7716-7727. [PMID: 40151986 DOI: 10.1039/d4cp04525d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Diarylketones such as benzophenones, oxybenzones, chalcones and their derivatives exhibit promising applications as UV filters/sunscreen agents due to their effective absorption in the UV region and dissipation through non-radiative pathways. However, elucidation of the underlying photoreactive mechanism is non-trivial due to the ultrafast lifetimes of transient species, involvement of non-adiabatic curve crossings among the potential surfaces, etc. In this context, we investigate the excited-state photoreaction dynamics of 4-hydroxychalcone (4-HC) under various environments through femtosecond-transient absorption (fs-TA), nanosecond-transient absorption (ns-TA), and femtosecond-fluorescence upconversion (fs-FL) measurements. Steady-state fluorescence measurements of 4-HC in the presence of 1-methylimidazole (MI)/tert-butylamine (TBA) exhibit dual band emission. The fs-TA measurements of 4-HC in the presence of MI/TBA exhibit distinct spectral and associated lifetimes as compared to 4-HC alone indicating a significant interaction of the hydroxyl proton with bases and influencing the reaction dynamics. The 4-HC:MI/TBA adduct undergoes excited-state intermolecular proton transfer within a time scale of ∼500 fs and subsequently relaxes back to the ground state through a long-lived triplet state. The experimental observations of excited-state reaction dynamics of 4-HC in the presence of MI/TBA bases have been well corroborated with the computational analysis.
Collapse
Affiliation(s)
- Preetika Verma
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| | - Reshma Mathew
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| | - Nishant Dhiman
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bangalore, 560012, India
| | - Prajoy Kumar Mitra
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| | - Yapamanu Adithya Lakshmanna
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| |
Collapse
|
2
|
Xie BB, Tang XF, Liu XY, Chang XP, Cui G. Mechanistic photophysics and photochemistry of unnatural bases and sunscreen molecules: insights from electronic structure calculations. Phys Chem Chem Phys 2021; 23:27124-27149. [PMID: 34849517 DOI: 10.1039/d1cp03994f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photophysics and photochemistry are basic subjects in the study of light-matter interactions and are ubiquitous in diverse fields such as biology, energy, materials, and environment. A full understanding of mechanistic photophysics and photochemistry underpins many recent advances and applications. This contribution first provides a short discussion on the theoretical calculation methods we have used in relevant studies, then we introduce our latest progress on the mechanistic photophysics and photochemistry of two classes of molecular systems, namely unnatural bases and sunscreens. For unnatural bases, we disclose the intrinsic driving forces for the ultrafast population to reactive triplet states, impacts of the position and degree of chalcogen substitutions, and the effects of complex environments. For sunscreen molecules, we reveal the photoprotection mechanisms that dissipate excess photon energy to the surroundings by ultrafast internal conversion to the ground state. Finally, relevant theoretical challenges and outlooks are discussed.
Collapse
Affiliation(s)
- Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Xiu-Fang Tang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
3
|
Chan CTL, Ma C, Chan RCT, Ou HM, Xie HX, Wong AKW, Wang ML, Kwok WM. A long lasting sunscreen controversy of 4-aminobenzoic acid and 4-dimethylaminobenzaldehyde derivatives resolved by ultrafast spectroscopy combined with density functional theoretical study. Phys Chem Chem Phys 2020; 22:8006-8020. [PMID: 32239002 DOI: 10.1039/c9cp07014a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
4-Aminobenzoic acid (PABA) is one of the earliest patented and most commonly used sunscreen components. There is however a long-lasting controversy on its photo-protective efficacy owing to the lack of information on its protolytic equilibrium and photo-dynamics after absorption of ultraviolet radiation in physiologically relevant aqueous solution. The excitation dynamics in water also remains largely unknown for analogs of PABA such as 4-dimethylaminoacetophenone (DMAAP) and 4-dimethylaminobenzaldehyde (DMABA) which are recognized as prototypes for photo-induced twisted intramolecular charge transfer (TICT). Herein we report a combined application of femtosecond broadband time-resolved fluorescence and transient absorption coupled with density functional theoretical study for PABA, DMAAP, and DMABA under several solvent conditions with representative properties in terms of the pH, polarity and hydrogen bonding capacity. The results we gained demonstrate that, in a neutral aqueous solution, PABA taking the deprotonated anion form in the ground state undergoes rapid protonation after excitation, producing excited state species in the neutral form that may shift effectively by intersystem crossing (ISC) to the long-lasting triplet state capable of damaging nucleic acids. This provides evidence at the molecular level for the detrimental effect of PABA if used as a sunscreen ingredient. In contrast, our investigation on DMAAP and DMABA unveils an unusual solvent controlled deactivation dynamics rendered by the participation of the carbonyl oxygen associated nOπ* state featuring energy and structure strongly responsive to solvent properties. In particular, these molecules in water exhibit solute-solvent hydrogen bonding at the sites of the carbonyl oxygen and the amino nitrogen which is, respectively, weakened and strengthened after the excitation, leading to state reversal and formation of a nOπ* state with a peculiar non-planar structure. This quenches strongly the excitation, eliminates the TICT, suppresses the ISC and opens up the otherwise inaccessible internal conversion (IC) to account for ∼80% of the entire deactivation. The IC, observed to proceed at a rate of ∼2.5 ps, allows the effective recovery of the ground state, providing substantial protection against ultraviolet irradiation. Moreover, the revelation of highly solvent sensitive fluorescence emission from DMABA and DMAAP implies the potential application of these molecules as the functional element in the design of sensory materials for probing the polarity and hydrogen bonding character of the surrounding environment.
Collapse
Affiliation(s)
- Chris Tsz-Leung Chan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Ruth Chau-Ting Chan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Hui-Min Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Han-Xin Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Allen Ka-Wa Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| | - Ming-Liang Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| |
Collapse
|
4
|
Holt EL, Stavros VG. Applications of ultrafast spectroscopy to sunscreen development, from first principles to complex mixtures. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2019.1663062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emily L. Holt
- Molecular Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | | |
Collapse
|
5
|
Direct Observation of Photochemical Free Radical Production from the Sunscreen 2‐Phenylbenzimidazole‐5‐Sulfonic Acid via Laser‐Interfaced Mass Spectrometry. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|