Das P, Jaiswal PK, Puri S. Surface-directed spinodal decomposition on chemically patterned substrates.
Phys Rev E 2020;
102:012803. [PMID:
32794988 DOI:
10.1103/physreve.102.012803]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/19/2020] [Indexed: 11/07/2022]
Abstract
Surface-directed spinodal decomposition (SDSD) is the kinetic interplay of phase separation and wetting at a surface. This process is of great scientific and technological importance. In this paper, we report results from a numerical study of SDSD on a chemically patterned substrate. We consider simple surface patterns for our simulations, but most of the results apply for arbitrary patterns. In layers near the surface, we observe a dynamical crossover from a surface-registry regime to a phase-separation regime. We study this crossover using layerwise correlation functions and structure factors and domain length scales.
Collapse