1
|
Sudaarsan ASK, Ghosh AR. Appraisal of postbiotics in cancer therapy. Front Pharmacol 2024; 15:1436021. [PMID: 39372197 PMCID: PMC11449718 DOI: 10.3389/fphar.2024.1436021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Cancer remains a multifactorial disease with an increased mortality rate around the world for the past several decades. Despite advancements in treatment strategies, lower survival rates, drug-associated side effects, and drug resistance create a need for novel anticancer agents. Ample evidence shows that imbalances in the gut microbiota are associated with the formation of cancer and its progression. Altering the gut microbiota via probiotics and their metabolites has gained attention among the research community as an alternative therapy to treat cancer. Probiotics exhibit health benefits as well as modulate the immunological and cellular responses in the host. Apart from probiotics, their secreted products like bacteriocins, exopolysaccharides, short-chain fatty acids, conjugated linoleic acid, peptidoglycan, and other metabolites are found to possess anticancer activity. The beneficiary role of these postbiotic compounds is widely studied for characterizing their mechanism and mode of action that reduces cancer growth. The present review mainly focuses on the postbiotic components that are employed against cancer with their reported mechanism of action. It also describes recent research works carried out so far with specific strain and anticancer activity of derived compounds both in vitro and in vivo, validating that the probiotic approach would pave an alternative way to reduce the burden of cancer.
Collapse
|
2
|
Li S, Feng W, Wu J, Cui H, Wang Y, Liang T, An J, Chen W, Guo Z, Lei H. A Narrative Review: Immunometabolic Interactions of Host-Gut Microbiota and Botanical Active Ingredients in Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9096. [PMID: 39201782 PMCID: PMC11354385 DOI: 10.3390/ijms25169096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The gastrointestinal tract is where the majority of gut microbiota settles; therefore, the composition of the gut microbiota and the changes in metabolites, as well as their modulatory effects on the immune system, have a very important impact on the development of gastrointestinal diseases. The purpose of this article was to review the role of the gut microbiota in the host environment and immunometabolic system and to summarize the beneficial effects of botanical active ingredients on gastrointestinal cancer, so as to provide prospective insights for the prevention and treatment of gastrointestinal diseases. A literature search was performed on the PubMed database with the keywords "gastrointestinal cancer", "gut microbiota", "immunometabolism", "SCFAs", "bile acids", "polyamines", "tryptophan", "bacteriocins", "immune cells", "energy metabolism", "polyphenols", "polysaccharides", "alkaloids", and "triterpenes". The changes in the composition of the gut microbiota influenced gastrointestinal disorders, whereas their metabolites, such as SCFAs, bacteriocins, and botanical metabolites, could impede gastrointestinal cancers and polyamine-, tryptophan-, and bile acid-induced carcinogenic mechanisms. GPRCs, HDACs, FXRs, and AHRs were important receptor signals for the gut microbial metabolites in influencing the development of gastrointestinal cancer. Botanical active ingredients exerted positive effects on gastrointestinal cancer by influencing the composition of gut microbes and modulating immune metabolism. Gastrointestinal cancer could be ameliorated by altering the gut microbial environment, administering botanical active ingredients for treatment, and stimulating or blocking the immune metabolism signaling molecules. Despite extensive and growing research on the microbiota, it appeared to represent more of an indicator of the gut health status associated with adequate fiber intake than an autonomous causative factor in the prevention of gastrointestinal diseases. This study detailed the pathogenesis of gastrointestinal cancers and the botanical active ingredients used for their treatment in the hope of providing inspiration for research into simpler, safer, and more effective treatment pathways or therapeutic agents in the field.
Collapse
Affiliation(s)
- Shanlan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Jiaqi Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Herong Cui
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Yiting Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Tianzhen Liang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Jin An
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Wanling Chen
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Zhuoqian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China; (S.L.); (J.W.); (Y.W.); (T.L.); (J.A.); (W.C.); (Z.G.)
| |
Collapse
|
3
|
Mohammadi A, Kazemipour N, Ghorbankhani GA, Morovati S, Hashempour Sadeghian M. Glycated nisin enhances nisin's cytotoxic effects on breast cancer cells. Sci Rep 2024; 14:17808. [PMID: 39090195 PMCID: PMC11294603 DOI: 10.1038/s41598-024-68765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
Antimicrobial peptides, such as nisin, are proposed as promising agents for cancer treatment. While glycation has been recognized as an effective method for enhancing various physicochemical properties of nisin, its anticancer effects remain unexplored. Therefore, we aimed to assess the anticancer potential of glycated nisin against MDA-MB-231 cells. The MDA-MB cells were treated with increasing concentrations of nisin and glycated nisin for 24, 48, and 72 h. The IC50 values for nisin were higher than those for glycated nisin. Glycated nisin at concentrations of 20 and 40 µg/mL decreased cell viability more than nisin at the same concentrations. The rate of apoptosis in the group treated with 20 µg/mL of nisin was lower compared to other treatment groups, and no significant difference in apoptosis rates was observed at different time points (p > 0.05). However, in the glycated nisin groups with concentrations of 10, 20, and 40 µg/mL, the level of apoptosis was very high after 24 h (73-81% of cells undergoing apoptosis). Overall, our study suggests that glycated nisin exhibits stronger cytotoxic effects on MDA-MB-231 cells, primarily involving the induction of apoptosis. This indicates its potential utilization as an alternative approach to address the issue of drug resistance in cancer cells.
Collapse
Affiliation(s)
- Ali Mohammadi
- Division of Virology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrin Kazemipour
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Gholam Abbas Ghorbankhani
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
4
|
Wang Y, Wang Y, Sun T, Xu J. Bacteriocins in Cancer Treatment: Mechanisms and Clinical Potentials. Biomolecules 2024; 14:831. [PMID: 39062544 PMCID: PMC11274894 DOI: 10.3390/biom14070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer poses a severe threat to human health. Although conventional chemotherapy remains a cornerstone of cancer treatment, its significant side effects and the growing issue of drug resistance necessitate the urgent search for more efficient and less toxic anticancer drugs. In recent years, bacteriocins, antimicrobial peptides of microbial origin, have garnered significant attention due to their targeted antitumor activity. This unique activity is mainly attributed to their cationic and amphiphilic nature, which enables bacteriocins to specifically kill tumor cells without harming normal cells. When involving non-membrane-disrupting mechanisms, such as apoptosis induction, cell cycle blockade, and metastasis inhibition, the core mechanism of action is achieved by disrupting cell membranes, which endows bacteriocins with low drug resistance and high selectivity. However, the susceptibility of bacteriocins to hydrolysis and hemolysis in vivo limits their clinical application. To overcome these challenges, structural optimization of bacteriocins or their combination with nanotechnology is proposed for future development. This review aims to study the mechanism of action and current research status of bacteriocins as anticancer treatments, thus providing new insights for their clinical development and application.
Collapse
Affiliation(s)
- Yiwen Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Yue Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Tao Sun
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Junnan Xu
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China; (Y.W.); (Y.W.)
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang 110042, China
| |
Collapse
|
5
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
6
|
Chernyshova DN, Tyulin AA, Ostroumova OS, Efimova SS. Discovery of the Potentiator of the Pore-Forming Ability of Lantibiotic Nisin: Perspectives for Anticancer Therapy. MEMBRANES 2022; 12:membranes12111166. [PMID: 36422158 PMCID: PMC9694817 DOI: 10.3390/membranes12111166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 05/12/2023]
Abstract
This study was focused on the action of lantibiotic nisin on the phospholipid membranes. Nisin did not produce ion-permeable pores in the membranes composed of DOPC or DOPE. The introduction of DOPS into bilayer lipid composition led to a decrease in the threshold detergent concentration of nisin. An addition of nisin to DOPG- and TOCL-enriched bilayers caused the formation of well-defined ion pores of various conductances. The transmembrane macroscopic current increased with the second power of the lantibiotic aqueous concentration, suggesting that the dimer of nisin was at least involved in the formation of conductive subunit. The pore-forming ability of lantibiotic decreased in the series: DOPC/TOCL ≈ DOPE/TOCL >> DOPC/DOPG ≥ DOPE/DOPG. The preferential interaction of nisin to cardiolipin-enriched bilayers might explain its antitumor activity by pore-formation in mitochondrial membranes. Small natural molecules, phloretin and capsaicin, were found to potentiate the membrane activity of nisin in the TOCL-containing membranes. The effect was referred to as changes in the membrane boundary potential at the adsorption of small molecules. We concluded that the compounds diminishing the membrane boundary potential should be considered as the potentiator of the nisin pore-forming ability that can be used to develop innovative formulations for anticancer therapy.
Collapse
|
7
|
Thanjavur N, Sangubotla R, Lakshmi BA, Rayi R, Mekala CD, Reddy AS, Viswanath B. Evaluating the antimicrobial and apoptogenic properties of bacteriocin (nisin) produced by Lactococcus lactis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Haider T, Pandey V, Behera C, Kumar P, Gupta PN, Soni V. Nisin and nisin-loaded nanoparticles: a cytotoxicity investigation. Drug Dev Ind Pharm 2022; 48:310-321. [PMID: 35938875 DOI: 10.1080/03639045.2022.2111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Nisin is an antibacterial peptide with anticancer properties, but the main drawback is its rapid enzymatic degradation and limited permeation across the cell membrane. This research aims to to overcome these drawbacks by developing nisin-loaded nanoparticles with improved cytotoxic effects. SIGNIFICANCE PLGA nanoparticles are one of the most effective biodegradable and biocompatible drug delivery carriers. In the present study, nisin-loaded nanoparticles showed enhanced anticancer effects. METHODS NPN was prepared by a double emulsion solvent evaporation method and characterized for different parameters. The cytotoxic investigation of NPN was carried out on various cell lines, including A549, SW-620, HT-29, PC-3, MDA-MB-231, MCF-7, MiaPaca-2, and fR2 by sulforhodamine B (SRB) assay. Mechanistic investigation of cellular cytotoxicity was performed by using bright-field microscopy, DAPI staining, intracellular reactive oxygen species (ROS), changes in mitochondrial membrane potential (ΔΨm), and western blotting. A comparative cytotoxicity study of nisin and NPN was performed on normal breast epithelial cells (fR-2). RESULTS NPN showed spherical shape, 289.09 ± 3.63 nm particle size, and 63.37 ± 3.12% entrapment efficiency. NPN was more cytotoxic to the MDA-MB-231 cell line, showing higher nuclear fragmentation, ROS generation, and depletion of ΔΨm like apoptosis signs compared to nisin and with no cytotoxicity on normal cells. CONCLUSIONS The findings suggest that nisin delivery via PLGA nanoparticles can be used to treat cancer without significant effects on healthy cells.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, India-470003
| | - Vikas Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, India-470003
| | - Chittaranjan Behera
- Formulation & Drug Delivery Division CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, India-180001
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prem N Gupta
- Formulation & Drug Delivery Division CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, India-180001
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, India-470003
| |
Collapse
|
9
|
A Comprehensive Review on the Anticancer Potential of Bacteriocin: Preclinical and Clinical Studies. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10386-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Sadri H, Aghaei M, Akbari V. Nisin induces apoptosis in cervical cancer cells via reactive oxygen species generation and mitochondrial membrane potential changes. Biochem Cell Biol 2022; 100:136-141. [PMID: 34986025 DOI: 10.1139/bcb-2021-0225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nisin, an antimicrobial peptide produced by Lactococcus lactis, is widely used as a safe food preservative and has been recently attracting the attention of many researchers as a potential anticancer agent. The cytotoxicity of nisin against HeLa, OVCAR-3, SK-OV-3, and HUVEC cells was evaluated using MTT assay. The apoptotic effect of nisin was identified by Annexin-V/propidium iodide assay, and then it was further confirmed by western blotting analysis, mitochondrial membrane potential (ΔΨm) analysis, and reactive oxygen species (ROS) assay. The MTT assay showed concentration-dependent cytotoxicity of nisin towards cancer cell lines, with the IC50 values of 11.5-23 µM, but less toxicity against normal endothelial cells. Furthermore, treatment of cervical cancer cells with 12 µM nisin significantly (P<0.05) increased the Bax/Bcl-2 ratio (4.9-fold), reduced ΔΨm (70%), and elevated ROS levels (1.7-fold). These findings indicated that nisin might have anticancer and apoptogenic activities through mitochondrial dysfunction and oxidative stress damage in cervical cancer cells.
Collapse
Affiliation(s)
- Houri Sadri
- Isfahan University of Medical Sciences, 48455, Department of Pharmaceutical Biotechnology, Isfahan, Iran (the Islamic Republic of);
| | - Mahmoud Aghaei
- Isfahan University of Medical Sciences, 48455, Isfahan, Isfahan, Iran (the Islamic Republic of);
| | - Vajihe Akbari
- Isfahan University of Medical Sciences, 48455, Department of Pharmaceutical Biotechnology, Isfahan, Iran (the Islamic Republic of);
| |
Collapse
|
11
|
ADIYOGA R, ARIEF II, BUDIMAN C, ABIDIN Z. In vitro anticancer potentials of Lactobacillus plantarum IIA-1A5 and Lactobacillus acidophilus IIA-2B4 extracts against WiDr human colon cancer cell line. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.87221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Liu C, Zheng J, Ou X, Han Y. Anti-cancer Substances and Safety of Lactic Acid Bacteria in Clinical Treatment. Front Microbiol 2021; 12:722052. [PMID: 34721321 PMCID: PMC8548880 DOI: 10.3389/fmicb.2021.722052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 01/06/2023] Open
Abstract
Lactic acid bacteria (LAB) are a kind of Gram-positive bacteria which can colonize in the biological gastrointestinal tract and play a variety of probiotic roles. LAB have a wide range of applications in industry, animal husbandry, planting, food safety, and medical science fields. Previous studies on LAB have typically concentrated on their effects on improving the digestion and absorption of the gastrointestinal tract, regulating the balance of the microflora, and inhibiting the production and accumulation of toxic substances. The resistance of LAB to cancer is a topic of growing interest and relevance. This paper provided a summary of bio-active substances of LAB when they act against cancer, as well as the safety of LAB in clinical cancer treatment. Moreover, this paper further discussed several possible directions for future research and the potential application of LAB as anti-cancer therapy.
Collapse
Affiliation(s)
- Chaoran Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jiaqi Zheng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xuan Ou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuzhu Han
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Hong W, Liu CC, Zhang H, Chen Z, Xiao M, Xu L. Cancer Cell Preferential Penetration and pH-Responsive Drug Delivery of Oligorutin. Biomacromolecules 2021; 22:3679-3691. [PMID: 34383480 DOI: 10.1021/acs.biomac.1c00268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report herein a novel delivery system, derived from the facile enzymatic synthesis of oligorutin (OR), for cancer cell targeting and pH-responsive drug delivery. In this study, we demonstrate that OR could preferentially penetrate cancer cells via the lipid raft-mediated endocytosis pathway, and cell membrane cholesterol was critical to the internalization of OR. The accumulation of OR in the tumor region was further confirmed by an in vivo biodistribution study. Considering the tumor-targeting property of OR, a pH-responsive drug delivery system (OR-BTZ) was developed by covalent conjugation of the catechol groups on OR with antitumor drug bortezomib (BTZ) through a pH-sensitive borate ester bond. OR-BTZ exerted cytotoxicity as well as inhibition of the migration and invasion to hepatoma carcinoma cells and showed no apparent cytotoxicity with liver normal cells. The OR-BTZs also presented significant therapeutic efficacy and low systematic toxicity in the murine hepatocellular carcinoma model. To our knowledge, this study presents the first attempt to exploit the potential of oligoflavonoids for cancer cell-targeted drug delivery and will motivate the development of flavonoids and their derivatives as a new type of biomaterials for tumor-targeted therapy.
Collapse
Affiliation(s)
- Weiying Hong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Chang-Cheng Liu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Henan Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| | - Zhiyong Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, Jinan University, Jinan 250022, China
| | - Min Xiao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
| |
Collapse
|
14
|
Huang F, Teng K, Liu Y, Cao Y, Wang T, Ma C, Zhang J, Zhong J. Bacteriocins: Potential for Human Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5518825. [PMID: 33936381 PMCID: PMC8055394 DOI: 10.1155/2021/5518825] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Due to the challenges of antibiotic resistance to global health, bacteriocins as antimicrobial compounds have received more and more attention. Bacteriocins are biosynthesized by various microbes and are predominantly used as food preservatives to control foodborne pathogens. Now, increasing researches have focused on bacteriocins as potential clinical antimicrobials or immune-modulating agents to fight against the global threat to human health. Given the broad- or narrow-spectrum antimicrobial activity, bacteriocins have been reported to inhibit a wide range of clinically pathogenic and multidrug-resistant bacteria, thus preventing the infections caused by these bacteria in the human body. Otherwise, some bacteriocins also show anticancer, anti-inflammatory, and immune-modulatory activities. Because of the safety and being not easy to cause drug resistance, some bacteriocins appear to have better efficacy and application prospects than existing therapeutic agents do. In this review, we highlight the potential therapeutic activities of bacteriocins and suggest opportunities for their application.
Collapse
Affiliation(s)
- Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yanhong Cao
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| |
Collapse
|
15
|
Zhao J, Zhu R, Zhang X, Zhang B, Liu Y, Li Y, Wang W, Phillips DL. A photoenhanced oxidation of amino acids and the cross-linking of lysozyme mediated by tetrazolium salts. Phys Chem Chem Phys 2021; 23:3761-3770. [PMID: 33538741 DOI: 10.1039/d0cp04887a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetrazolium salts (TZs) are pervasively utilized as precursors in the dye industry, colorimetric probes in enzyme assays and for exploring nanomaterial toxicity, but its own toxicity is not investigated enough so far. Using femtosecond transient absorption spectroscopy, nanosecond pulse radiolysis (ns-PRL), western blotting and UV-vis absorption spectroscopy, here we characterized a neutral tetrazolinyl radical (with the same maximum absorption at 420 nm and different lifetimes of 5.0 and 9.0 μs for two selected TZs), the key intermediate of TZs reduction, and noticed TZs-formazan production under UV light irradiation accompanied by 41% increase in the cross-linking of lysozyme (Lyso, model protein) compared to TZs-free sample, which uncovered the photoenhanced oxidation of TZs towards Lyso. The ns-PRL in a reductive atmosphere simulated the electron/proton donors of amino acid residues in Lyso upon photoexcitation and revealed the reduction mechanism of TZs, as that first followed one-electron-transfer and then probably proton-coupled electron transfer. This is the first time to report on the photoenhanced oxidation mechanism of TZs, which would provide new insights into the applications of TZs in cell biology, "click" chemistry and nanotoxicology.
Collapse
Affiliation(s)
- Jianfeng Zhao
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 11111, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Haider T, Pandey V, Behera C, Kumar P, Gupta PN, Soni V. Spectrin conjugated PLGA nanoparticles for potential membrane phospholipid interactions: Development, optimization and in vitro studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Nguyen T, Brody H, Lin GH, Rangé H, Kuraji R, Ye C, Kamarajan P, Radaic A, Gao L, Kapila Y. Probiotics, including nisin-based probiotics, improve clinical and microbial outcomes relevant to oral and systemic diseases. Periodontol 2000 2020; 82:173-185. [PMID: 31850634 DOI: 10.1111/prd.12324] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of probiotic supplementation on systemic health and gastrointestinal diseases have been investigated in numerous studies. The aim of this review is to provide an overview of probiotics and their effects on periodontal health. Probiotics show beneficial effects as adjunctive therapeutics and as stand-alone agents in the treatment and prevention of gingivitis as well as specific clinical parameters of periodontitis. This review focuses on the clinical and microbiological aspects of probiotics in the context of health, gingivitis, and periodontitis. In addition, a special focus on nisin-producing probiotics and nisin itself showcase their significant potential for oral and systemic use.
Collapse
Affiliation(s)
- Trang Nguyen
- School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Hanna Brody
- School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Guo-Hao Lin
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Hélène Rangé
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Department of Periodontology, UFR of Odontology, APHP, Rothschild Hospital, University of Paris Diderot, Paris, France.,Faculty of Dental Surgery, University of Paris Descartes, Montrouge, France
| | - Ryutaro Kuraji
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Changchang Ye
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, The University of Campinas, Campinas, Sao Paulo, Brazil
| | - Li Gao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yvonne Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
18
|
Augmented therapeutic efficacy of 5-fluorouracil in conjunction with lantibiotic nisin against skin cancer. Biochem Biophys Res Commun 2019; 520:551-559. [PMID: 31615654 DOI: 10.1016/j.bbrc.2019.10.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/05/2019] [Indexed: 02/08/2023]
Abstract
Chemotherapy, a gold standard for treating most of the cancers, involves drastic side-effects and multidrug resistance. An attractive alternative is development of combination therapy employing antimicrobial peptides with chemotherapeutic drugs. In vivo studies: Anti-cancer therapeutic efficacy of 5-fluororuacil (5-FU) in conjunction with nisin (50 mg/kg body weight) was evaluated against murine skin cancer, in terms of tumor biostatistics, histopathology, electron microscopy, infrared spectroscopy and transcriptional studies. In vitro studies: Dose and time dependent cytotoxicity of agents were assessed against A431 cell line using MTT assay, LDH assay and acridine orange/ethidium bromide dual staining. Significant percentage decrease(s) in mean tumor volume and tumor burden were observed in nisin+ 5-FU combination treated groups as compared to alone treated groups. Histoarchitecture of treated skins demonstrated restoration towards normal skin tissue (being highest in the combination group). Modulation of apoptotic, angiogenic and proliferative genes were observed in treated groups. IC50 of combination was found to be 2 μg/ml as compared to nisin alone (32μg/ml) and 5-FU alone (16μg/ml) with combination index of 0.188. Dual staining showed that rate of induction of apoptosis was higher in the combination group as compared to single agents. Nisin and 5-FU in combination were found to be synergistic both in vivo and in vitro.
Collapse
|