1
|
Rathee P, Moorkkannur SN, Prabhakar R. Structural studies of catalytic peptides using molecular dynamics simulations. Methods Enzymol 2024; 697:151-180. [PMID: 38816122 DOI: 10.1016/bs.mie.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Many self-assembling peptides can form amyloid like structures with different sizes and morphologies. Driven by non-covalent interactions, their aggregation can occur through distinct pathways. Additionally, they can bind metal ions to create enzyme like active sites that allow them to catalyze diverse reactions. Due to the non-crystalline nature of amyloids, it is quite challenging to elucidate their structures using experimental spectroscopic techniques. In this aspect, molecular dynamics (MD) simulations provide a useful tool to derive structures of these macromolecules in solution. They can be further validated by comparing with experimentally measured structural parameters. However, these simulations require a multi-step process starting from the selection of the initial structure to the analysis of MD trajectories. There are multiple force fields, parametrization protocols, equilibration processes, software and analysis tools available for this process. Therefore, it is complicated for non-experts to select the most relevant tools and perform these simulations effectively. In this chapter, a systematic methodology that covers all major aspects of modeling of catalytic peptides is provided in a user-friendly manner. It will be helpful for researchers in this critical area of research.
Collapse
Affiliation(s)
- Parth Rathee
- Department of Chemistry, University of Miami, Coral Gables, FL, United States
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL, United States.
| |
Collapse
|
2
|
Khadka D, Jayasinghe-Arachchige VM, Prabhakar R, Ramamurthy V. Application of molecular dynamic simulations in modeling the excited state behavior of confined molecules. Photochem Photobiol Sci 2023:10.1007/s43630-023-00486-2. [PMID: 37843722 DOI: 10.1007/s43630-023-00486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Relative to isotropic organic solvent medium, the structure and conformation of a reactant molecule in an organized and confining medium are often different. In addition, because of the rigidity of the immediate environment, the reacting molecule have a little freedom to undergo large changes even upon gaining energy or modifications in the electronic structure. These alterations give rise to differences in the photochemistry of a molecular and supramolecular species. In this study, one such example is presented. α-Alkyl dibenzylketones upon excitation in isotropic solvents give products via Norrish type I and type II reactions that are independent of the chain length of the alkyl substituent. On the other hand, when these molecules are enclosed within an organic capsule of volume ~ 550 Å3, they give products that are strikingly dependent on the length of the α-alkyl substitution. These previously reported experimental observations are rationalized based on the structures generated by molecular modeling (docking and molecular dynamics (MD) simulations). It is shown that MD simulations that are utilized extensively in biologically important macromolecules can also be useful to understand the excited state behavior of reactive molecules that are part of supramolecular assemblies. These simulations can provide structural information of the reactant molecule and the surroundings complementing that with the one obtained from 1 and 2D NMR experiments. MD simulated structures of seven α-alkyl dibenzylketones encapsulated within the octa acid capsule provide a clear understanding of their unique behavior in this restricted medium. Because of the rigidity of the medium, these structures although generated in the ground state can rationalize the photochemical behavior of the molecules in the excited state.
Collapse
Affiliation(s)
- Dipendra Khadka
- Department of Chemistry, University of Miami, Coral Gables, FL, 33124, USA
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL, 33124, USA.
| | | |
Collapse
|
3
|
Serafim LF, Jayasinghe-Arachchige VM, Wang L, Rathee P, Yang J, Moorkkannur N S, Prabhakar R. Distinct chemical factors in hydrolytic reactions catalyzed by metalloenzymes and metal complexes. Chem Commun (Camb) 2023. [PMID: 37366367 DOI: 10.1039/d3cc01380d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The selective hydrolysis of the extremely stable phosphoester, peptide and ester bonds of molecules by bio-inspired metal-based catalysts (metallohydrolases) is required in a wide range of biological, biotechnological and industrial applications. Despite the impressive advances made in the field, the ultimate goal of designing efficient enzyme mimics for these reactions is still elusive. Its realization will require a deeper understanding of the diverse chemical factors that influence the activities of both natural and synthetic catalysts. They include catalyst-substrate complexation, non-covalent interactions and the electronic nature of the metal ion, ligand environment and nucleophile. Based on our computational studies, their roles are discussed for several mono- and binuclear metallohydrolases and their synthetic analogues. Hydrolysis by natural metallohydrolases is found to be promoted by a ligand environment with low basicity, a metal bound water and a heterobinuclear metal center (in binuclear enzymes). Additionally, peptide and phosphoester hydrolysis is dominated by two competing effects, i.e. nucleophilicity and Lewis acid activation, respectively. In synthetic analogues, hydrolysis is facilitated by the inclusion of a second metal center, hydrophobic effects, a biological metal (Zn, Cu and Co) and a terminal hydroxyl nucleophile. Due to the absence of the protein environment, hydrolysis by these small molecules is exclusively influenced by nucleophile activation. The results gleaned from these studies will enhance the understanding of fundamental principles of multiple hydrolytic reactions. They will also advance the development of computational methods as a predictive tool to design more efficient catalysts for hydrolysis, Diels-Alder reaction, Michael addition, epoxide opening and aldol condensation.
Collapse
Affiliation(s)
- Leonardo F Serafim
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Lukun Wang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Parth Rathee
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | - Jiawen Yang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
4
|
Krco S, Davis SJ, Joshi P, Wilson LA, Monteiro Pedroso M, Douw A, Schofield CJ, Hugenholtz P, Schenk G, Morris MT. Structure, function, and evolution of metallo-β-lactamases from the B3 subgroup-emerging targets to combat antibiotic resistance. Front Chem 2023; 11:1196073. [PMID: 37408556 PMCID: PMC10318434 DOI: 10.3389/fchem.2023.1196073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
β-Lactams are the most widely employed antibiotics in clinical settings due to their broad efficacy and low toxicity. However, since their first use in the 1940s, resistance to β-lactams has proliferated to the point where multi-drug resistant organisms are now one of the greatest threats to global human health. Many bacteria use β-lactamases to inactivate this class of antibiotics via hydrolysis. Although nucleophilic serine-β-lactamases have long been clinically important, most broad-spectrum β-lactamases employ one or two metal ions (likely Zn2+) in catalysis. To date, potent and clinically useful inhibitors of these metallo-β-lactamases (MBLs) have not been available, exacerbating their negative impact on healthcare. MBLs are categorised into three subgroups: B1, B2, and B3 MBLs, depending on their sequence similarities, active site structures, interactions with metal ions, and substrate preferences. The majority of MBLs associated with the spread of antibiotic resistance belong to the B1 subgroup. Most characterized B3 MBLs have been discovered in environmental bacteria, but they are increasingly identified in clinical samples. B3-type MBLs display greater diversity in their active sites than other MBLs. Furthermore, at least one of the known B3-type MBLs is inhibited by the serine-β-lactamase inhibitor clavulanic acid, an observation that may promote the design of derivatives active against a broader range of MBLs. In this Mini Review, recent advances in structure-function relationships of B3-type MBLs will be discussed, with a view to inspiring inhibitor development to combat the growing spread of β-lactam resistance.
Collapse
Affiliation(s)
- Stefan Krco
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Samuel J. Davis
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Pallav Joshi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Liam A. Wilson
- Chemistry Research Laboratory, Department of Chemistry, The Ineos Oxford Institute for Antimicrobial Research, Oxford University, Oxford, United Kingdom
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew Douw
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, The Ineos Oxford Institute for Antimicrobial Research, Oxford University, Oxford, United Kingdom
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Marc T. Morris
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Luiz E, Farias G, Bortoluzzi AJ, Neves A, de Melo Mattos LM, Pereira MD, Xavier FR, Peralta RA. Hydrolytic activity of new bioinspired Mn IIIMn II and Fe IIIMn II complexes as mimetics of PAPs: Biological and environmental interest. J Inorg Biochem 2022; 236:111965. [PMID: 35988388 DOI: 10.1016/j.jinorgbio.2022.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Abstract
Coordination compounds that mimic Purple Acid Phosphatases (PAPs) have drawn attention in the bioinorganic field due to their capacity to cleave phosphodiester bonds. However, their catalytic activity upon phosphate triesters is still unexplored. Thus, we report the synthesis and characterization of two binuclear complexes, [MnIIMnIII(L1)(OAc)2]BF4 (1) and [MnIIFeIII(L1)(OAc)2]BF4 (2) (H2L1 = 2-[N,N-bis-(2- pyridilmethyl)aminomethyl]-4-methyl-6-[N-(2-hydroxy-3-formyl-5-methylbenzyl)-N-(2-pyridylmethyl)aminomethyl]phenol), their hydrolytic activity and antioxidant potential. The complexes were fully characterized, including the X-Ray diffraction (XRD) of 1. Density functional theory (DFT) calculations were performed to better understand their electronic and structural properties and phosphate conjugates. The catalytic activity was analyzed for two model substrates, a diester (BDNPP) and a triester phosphate (DEDNPP). The results suggest enhancement of the hydrolysis reaction by 170 to 1500 times, depending on the substrate and complex. It was possible to accompany the catalytic reaction of DEDNPP hydrolysis by phosphorus nuclear magnetic resonance (31P NMR), showing that both 1 and 2 are efficient catalysts. Moreover, we also addressed that 1 and 2 present a relevant antioxidant potential, protecting the yeast Saccharomyces cerevisiae, used as eukaryotic model of study, against the exposure of cells to acute oxidative stress.
Collapse
Affiliation(s)
- Edinara Luiz
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Giliandro Farias
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Ademir Neves
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Larissa Maura de Melo Mattos
- Instituto de Química, Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909, Brazil; Rede Micologia RJ - FAPERJ
| | - Marcos Dias Pereira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909, Brazil; Rede Micologia RJ - FAPERJ
| | - Fernando R Xavier
- Departamento de Química, Universidade do Estado de Santa Catarina, Joinville, Santa Catarina 89219-710, Brazil.
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil.
| |
Collapse
|
6
|
Hu Q, Padron K, Hara D, Shi J, Pollack A, Prabhakar R, Tao W. Interactions of Urea-Based Inhibitors with Prostate-Specific Membrane Antigen for Boron Neutron Capture Therapy. ACS OMEGA 2021; 6:33354-33369. [PMID: 34926886 PMCID: PMC8674901 DOI: 10.1021/acsomega.1c03554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/04/2021] [Indexed: 06/14/2023]
Abstract
In this study, molecular interactions of prostate-specific membrane antigen (PSMA) with five chemically distinct urea-based boron-containing inhibitors have been investigated at the atomic level using molecular docking and molecular dynamics simulations. The PSMA-inhibitor complexations have been analyzed by comparing their binding modes, secondary structures, root-mean-square deviations, noncovalent interactions, principal components, and binding free energies. PSMA is a cell surface glycoprotein upregulated in cancerous cells and can be targeted by boron-labeled inhibitors for boron neutron capture therapy (BNCT). The effective BNCT requires the selective boron delivery to the tumor area and highly specific PSMA-mediated cellular uptake by tumor. Thus, a potent inhibitor must exhibit both high binding affinity and high boron density. The computational results suggest that the chemical nature of inhibitors affects the binding mode and their association with PSMA is primarily dominated by hydrogen bonding, salt bridge, electrostatic, and π-π interactions. The binding free energies (-28.0, -15.2, -43.9, -23.2, and -38.2 kcal/mol) calculated using λ-dynamics for all inhibitors (In1-5) predict preferential binding that is in accordance with experimental data. Among all inhibitors, In5 was found to be the best candidate for BNCT. The binding of this inhibitor to PSMA preserved its overall secondary structure. These results provide computational insights into the coordination flexibility of PSMA and its interaction with various inhibitors. They can be used for the design and synthesis of efficient BNCT agents with improved drug selectivity and high boron percentage.
Collapse
Affiliation(s)
- Qiaoyu Hu
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Kevin Padron
- Department
of Computer Science, University of Miami, Coral Gables, Florida 33146, United States
| | - Daiki Hara
- Department
of Radiation Oncology, University of Miami
Miller School of Medicine, Miami, Florida 33136, United States
| | - Junwei Shi
- Department
of Radiation Oncology, University of Miami
Miller School of Medicine, Miami, Florida 33136, United States
| | - Alan Pollack
- Department
of Radiation Oncology, University of Miami
Miller School of Medicine, Miami, Florida 33136, United States
| | - Rajeev Prabhakar
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Wensi Tao
- Department
of Radiation Oncology, University of Miami
Miller School of Medicine, Miami, Florida 33136, United States
| |
Collapse
|
7
|
Jeon H, Vazquez-Lima H, Jeong H, Cho KB, Hong S. Mono- and dinuclear zinc complexes bearing identical bis(thiosemicarbazone) ligand that exhibit alkaline phosphatase-like catalytic reactivity. J Biol Inorg Chem 2021; 27:37-47. [PMID: 34714402 DOI: 10.1007/s00775-021-01909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
Mono- and dinuclear zinc(II) complexes bearing bis(thiosemicarbazone) (bTSC) ligand were employed in the cleavage of phosphoester bonds. Comparative kinetic studies combined with theory suggested that the P-O bond cleavage is much accelerated by dinuclear zinc(II) complex in the presence of base. Based on the DFT-optimized structures of the proposed intermediates, it is plausible that (1) the removal of sulfur atoms of bTSC ligand from the zinc center provides two vacant sites for the binding of water (or hydroxide ion) and phosphoester and (2) the H-bonding between water (or hydroxide ion) and phosphoester, through several water molecules, may also assist the P-O bond cleavage and facilitate the nucleophilic attack. The kinetic and catalytic studies on the hydrolysis of phosphoester by dinuclear zinc complex showed a much-enhanced reactivity under basic reaction conditions, reaching over 95% conversion yield within 4 h. The currently presented compounds are arguably one of the faster synthetic Zn-based model performing phosphatase-like activity presented so far.
Collapse
Affiliation(s)
- Hyeri Jeon
- Department of Chemistry, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hugo Vazquez-Lima
- Department of Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.,Department of Inorganic Chemistry, Meritorious Autonomous University of Puebla, 72000, Puebla, Mexico
| | - Haewon Jeong
- Department of Chemistry, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
8
|
Substrate binding mechanism of glycerophosphodiesterase towards organophosphate pesticides. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Sharma G, Jayasinghe-Arachchige VM, Hu Q, Schenk G, Prabhakar R. Effect of Chemically Distinct Substrates on the Mechanism and Reactivity of a Highly Promiscuous Metallohydrolase. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04847] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Gaurav Sharma
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | | - Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
10
|
Hu Q, Jayasinghe‐Arachchige VM, Sharma G, Serafim LF, Paul TJ, Prabhakar R. Mechanisms of peptide and phosphoester hydrolysis catalyzed by two promiscuous metalloenzymes (insulin degrading enzyme and glycerophosphodiesterase) and their synthetic analogues. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Qiaoyu Hu
- Department of Chemistry, University of Miami Coral Gables Florida
| | | | - Gaurav Sharma
- Department of Chemistry, University of Miami Coral Gables Florida
| | | | - Thomas J. Paul
- Department of Chemistry, University of Miami Coral Gables Florida
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami Coral Gables Florida
| |
Collapse
|
11
|
Shi T, Fang L, Qin H, Wu X, Li QX, Hua R. Minute-Speed Biodegradation of Organophosphorus Insecticides by Cupriavidus nantongensis X1 T. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13558-13567. [PMID: 31738544 DOI: 10.1021/acs.jafc.9b06157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organophosphorus insecticides (OPs) have been widely used to control agricultural pests, which has raised concerns about OP residues in crops and the environment. In this study, we investigated the degradation kinetics and pathways of 8 OPs by Cupriavidus nantongensis X1T and identified the enzyme via gene cloning and in vitro assays. The degradation half-life of methyl parathion, triazophos, and phoxim was only 5, 9, and 43 min, respectively. It was 46 fold faster than that of triazophos by Bacillus sp. TAP-1, a well-studied triazophos-degrader. Strain X1T completely degraded not only chlorpyrifos, methyl parathion, parathion, fenitrothion, triazophos, and phoxim at 50 mg/L within 48 h but also the phenolic metabolites. This was the fastest degradation of OPs by bacterial whole cells reported thus far. The OPs were first hydrolyzed by an OP hydrolase encoded by the opdB gene in strain X1T, followed by further degradation of the metabolites. The crude enzyme maintained a full activity.
Collapse
Affiliation(s)
- Taozhong Shi
- Key Laboratory for Agri-Food Safety, School of Resource & Environment , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Liancheng Fang
- Key Laboratory for Agri-Food Safety, School of Resource & Environment , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Han Qin
- Key Laboratory for Agri-Food Safety, School of Resource & Environment , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Xiangwei Wu
- Key Laboratory for Agri-Food Safety, School of Resource & Environment , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , 1955 East-West Road , Honolulu , Hawaii 96822 , United States
| | - Rimao Hua
- Key Laboratory for Agri-Food Safety, School of Resource & Environment , Anhui Agricultural University , Hefei , Anhui 230036 , China
| |
Collapse
|
12
|
Rapid Biodegradation of the Organophosphorus Insecticide Chlorpyrifos by Cupriavidus nantongensis X1 T. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234593. [PMID: 31756950 PMCID: PMC6926599 DOI: 10.3390/ijerph16234593] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 11/28/2022]
Abstract
Chlorpyrifos was one of the most widely used organophosphorus insecticides and the neurotoxicity and genotoxicity of chlorpyrifos to mammals, aquatic organisms and other non-target organisms have caused much public concern. Cupriavidus nantongensis X1T, a type of strain of the genus Cupriavidus, is capable of efficiently degrading 200 mg/L of chlorpyrifos within 48 h. This is ~100 fold faster than Enterobacter B-14, a well-studied chlorpyrifos-degrading bacterial strain. Strain X1T can tolerate high concentrations (500 mg/L) of chlorpyrifos over a wide range of temperatures (30–42 °C) and pH values (5–9). RT-qPCR analysis showed that the organophosphorus hydrolase (OpdB) in strain X1T was an inducible enzyme, and the crude enzyme isolated in vitro could still maintain 75% degradation activity. Strain X1T can simultaneously degrade chlorpyrifos and its main hydrolysate 3,5,6-trichloro-2-pyridinol. TCP could be further metabolized through stepwise oxidative dechlorination and further opening of the benzene ring to be completely degraded by the tricarboxylic acid cycle. The results provide a potential means for the remediation of chlorpyrifos- contaminated soil and water.
Collapse
|