1
|
Singh SU, Chatterjee S, Lone SA, Ho HH, Kaswan K, Peringeth K, Khan A, Chiang YW, Lee S, Lin ZH. Advanced wearable biosensors for the detection of body fluids and exhaled breath by graphene. Mikrochim Acta 2022; 189:236. [PMID: 35633385 PMCID: PMC9146825 DOI: 10.1007/s00604-022-05317-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
Abstract
Given the huge economic burden caused by chronic and acute diseases on human beings, it is an urgent requirement of a cost-effective diagnosis and monitoring process to treat and cure the disease in their preliminary stage to avoid severe complications. Wearable biosensors have been developed by using numerous materials for non-invasive, wireless, and consistent human health monitoring. Graphene, a 2D nanomaterial, has received considerable attention for the development of wearable biosensors due to its outstanding physical, chemical, and structural properties. Moreover, the extremely flexible, foldable, and biocompatible nature of graphene provide a wide scope for developing wearable biosensor devices. Therefore, graphene and its derivatives could be trending materials to fabricate wearable biosensor devices for remote human health management in the near future. Various biofluids and exhaled breath contain many relevant biomarkers which can be exploited by wearable biosensors non-invasively to identify diseases. In this article, we have discussed various methodologies and strategies for synthesizing and pattering graphene. Furthermore, general sensing mechanism of biosensors, and graphene-based biosensing devices for tear, sweat, interstitial fluid (ISF), saliva, and exhaled breath have also been explored and discussed thoroughly. Finally, current challenges and future prospective of graphene-based wearable biosensors have been evaluated with conclusion. Graphene is a promising 2D material for the development of wearable sensors. Various biofluids (sweat, tears, saliva and ISF) and exhaled breath contains many relevant biomarkers which facilitate in identify diseases. Biosensor is made up of biological recognition element such as enzyme, antibody, nucleic acid, hormone, organelle, or complete cell and physical (transducer, amplifier), provide fast response without causing organ harm.
Collapse
Affiliation(s)
- Santoshi U Singh
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Subhodeep Chatterjee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shahbaz Ahmad Lone
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hsin-Hsuan Ho
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuldeep Kaswan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kiran Peringeth
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Arshad Khan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Department of Power and Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Frontier Research Center On Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
2
|
Mehler A, Néel N, Voloshina E, Dedkov Y, Kröger J. Second Floor of Flatland: Epitaxial Growth of Graphene on Hexagonal Boron Nitride. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102747. [PMID: 34310038 DOI: 10.1002/smll.202102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/17/2021] [Indexed: 06/13/2023]
Abstract
In the studies presented here, the subsequent growth of graphene on hexagonal boron nitride (h-BN) is achieved by the thermal decomposition of molecular precursors and the catalytic assistance of metal substrates. The epitaxial growth of h-BN on Pt(111) is followed by the deposition of a temporary Pt film that acts as a catalyst for the fabrication of the graphene sheet. After intercalation of the intermediate Pt film underneath the boron-nitride mesh, graphene resides on top of h-BN. Scanning tunneling microscopy and density functional calculations reveal that the moiré pattern of the van-der-Waals-coupled double layer is due to the interface of h-BN and Pt(111). While on Pt(111) the graphene honeycomb unit cells uniformly appear as depressions using a clean metal tip for imaging, on h-BN they are arranged in a honeycomb lattice where six protruding unit cells enframe a topographically dark cell. This superstructure is most clearly observed at small probe-surface distances. Spatially resolved inelastic electron tunneling spectroscopy enables the detection of a previously predicted acoustic hybrid phonon of the stacked materials. Its' spectroscopic signature is visible in surface regions where the single graphene sheet on Pt(111) transitions into the top layer of the stacking.
Collapse
Affiliation(s)
- Alexander Mehler
- Institut für Physik, Technische Universität Ilmenau, D-98693, Ilmenau, Germany
| | - Nicolas Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693, Ilmenau, Germany
| | - Elena Voloshina
- Physics Department, Shanghai University, Shanghai, 200444, P. R. China
- Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Yuriy Dedkov
- Physics Department, Shanghai University, Shanghai, 200444, P. R. China
- Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, D-98693, Ilmenau, Germany
| |
Collapse
|
3
|
Halle J, Néel N, Kröger J. Monolayer and Bilayer Graphene on Ru(0001): Layer-Specific and Moiré-Site-Dependent Phonon Excitations. J Phys Chem Lett 2021; 12:6889-6894. [PMID: 34279966 DOI: 10.1021/acs.jpclett.1c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene phonons are excited by the local injection of electrons and holes from the tip of a scanning tunneling microscope. Despite the strong graphene-Ru(0001) hybridization, monolayer graphene unexpectedly exhibits pronounced phonon signatures in inelastic electron tunneling spectroscopy. Spatially resolved spectroscopy reveals that the strength of the phonon signal depends on the site of the moiré lattice with a substantial red-shift of phonon energies compared to those of free graphene. Bilayer graphene gives rise to more pronounced spectral signatures of vibrational quanta with energies nearly matching the free graphene phonon energies. Spectroscopy data of bilayer graphene indicate moreover the presence of a Dirac cone plasmon excitation.
Collapse
Affiliation(s)
- Johannes Halle
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Nicolas Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
4
|
Mehler A, Néel N, Kröger J. Dissimilar Decoupling Behavior of Two-Dimensional Materials on Metal Surfaces. J Phys Chem Lett 2020; 11:5204-5211. [PMID: 32515963 DOI: 10.1021/acs.jpclett.0c01320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The efficiency of hexagonal boron nitride and graphene to separate the hydrocarbon molecule C64H36 from Ru(0001) and Pt(111) surfaces is explored in low-temperature scanning tunneling microscopy and spectroscopy experiments. Both 2D materials enable the observation of the Franck-Condon effect in both frontier orbitals. On hexagonal boron nitride, vibronic progression with two vibrational energies gives rise to sharp orbital sidebands that are clearly visible up to the second order of the vibrational quantum number with different Huang-Rhys factors. In contrast, on graphene, orbital and vibronic spectroscopic signatures exhibit broad line shapes, with the second-order progression being hardly discriminable. Only a single vibrational quantum energy leaves its fingerprint in the Franck-Condon spectrum.
Collapse
Affiliation(s)
- Alexander Mehler
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Nicolas Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
5
|
Ren S, Meng L, Ma W, Lin S, Yang W, Lan J, Jia X, Cai Q, Yang X. Enhancing overall properties of epoxy-based composites using polydopamine-coated edge-carboxylated graphene prepared via one-step high-pressure ball milling. Phys Chem Chem Phys 2019; 21:21726-21737. [PMID: 31372612 DOI: 10.1039/c9cp03014j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Graphene (GN) nanofillers have been widely used to enhance the overall performance of polymer composites due to their various superior properties, which strongly rely on the uniform dispersion and strong interfacial bonding of GN with high-quality polymer matrices. In the present study, the strengthening and functional effects of polydopamine-coated edge-carboxylated graphene (p-ECG) on the mechanical, moisture-barrier and electromagnetic properties of epoxy (EP)-based composites were systematically evaluated. p-ECG was successfully prepared via one-step high-pressure ball milling through the edge-selective functionalization and exfoliation of pristine graphite in the presence of dry ice, followed by synchronous reduction and coating via the mild oxidative polymerization of mussel-inspired dopamine. p-ECG showed prominent advantages of a small sheet size, excellent dispersibility and high chemical reactivity in the EP matrix. Obvious enhancements were achieved in the tensile and flexural properties and moisture-barrier performance of EP composites as well as the interlaminar shear strength (ILSS) and transverse fiber bundle tensile (TFBT) strength of carbon fiber (CF)/EP composites, which confirmed the excellent dispersion and chemically strengthened interfacial bonding of p-ECG in the EP matrix. More importantly, p-ECG introduced onto the surface of desized CF led to significant enhancement in the electromagnetic interference (EMI) shielding capability of CF/EP composites, which was primarily ascribed to the polarization relaxation effect induced by the defects and functional groups in p-ECG as well as the increase in electrical conductivity derived from the "bridging effect" of p-ECG. Specifically, with p-ECG content of 0.5 wt%, the increments in tensile strength, TFBT strength, shielding effectiveness (total, SET) and shielding effectiveness (reflection loss, SER) were as high as 33.3, 34.3, 31.3 and 71.0%, respectively.
Collapse
Affiliation(s)
- Shujie Ren
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|