1
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
2
|
Evrard CN, Thompson LM. Reactivity of Group 5 and 6 Single-Site Photocatalysts for Partial Oxidation of Methane: Comparison of Chromium, Niobium, and Tungsten-Doped Mesoporous Amorphous Silica. J Phys Chem A 2023; 127:6974-6988. [PMID: 37581579 DOI: 10.1021/acs.jpca.3c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Single-site transition-metal-doped photocatalysts can potentially be used for partial oxidation of methane (POM) at remote sites where natural gas is extracted and methane is often flared or released to the atmosphere. While there have been several investigations into the performance of vanadium, there has been no general survey of the performance of other metals. This work aims and examines Cr, Nb, and W metal oxide materials embedded in amorphous SiO2 to determine the viability of each metal in catalyzing the POM. Photoexcited states are examined to determine the nature of the photoactivated species, and then the subsequent POM reaction mechanisms are elucidated. Using the calculated energies of reaction intermediates and transition states, the rate of methanol formation is evaluated through the use of a microkinetic model. The findings indicate that all three metals are potentially more suitable for catalyzing POM than vanadium but that niobium shows the most favorable energy profile.
Collapse
Affiliation(s)
- Clint N Evrard
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40205, United States
| | - Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40205, United States
| |
Collapse
|
3
|
Centi G, Perathoner S. Catalysis for an Electrified Chemical Production. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Alptekin F, Celiktas MS. Review on Catalytic Biomass Gasification for Hydrogen Production as a Sustainable Energy Form and Social, Technological, Economic, Environmental, and Political Analysis of Catalysts. ACS OMEGA 2022; 7:24918-24941. [PMID: 35910154 PMCID: PMC9330121 DOI: 10.1021/acsomega.2c01538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Sustainable energy production is a worldwide concern due to the adverse effects and limited availability of fossil fuels, requiring the development of suitable environmentally friendly alternatives. Hydrogen is considered a sustainable future energy source owing to its unique properties as a clean and nontoxic fuel with high energy yield and abundance. Hydrogen can be produced through renewable and nonrenewable sources where the production method and feedstock used are indicators of whether they are carbon-neutral or not. Biomass is one of the renewable hydrogen sources that is also available in large quantities and can be used in different conversion methods to produce fuel, heat, chemicals, etc. Biomass gasification is a promising technology to generate carbon-neutral hydrogen. However, tar production during this process is the biggest obstacle limiting hydrogen production and commercialization of biomass gasification technology. This review focuses on hydrogen production through catalytic biomass gasification. The effect of different catalysts to enhance hydrogen production is reviewed, and social, technological, economic, environmental, and political (STEEP) analysis of catalysts is carried out to demonstrate challenges in the field and the development of catalysts.
Collapse
Affiliation(s)
- Fikret
Muge Alptekin
- Solar
Energy Institute, Ege University, 35100 Bornova-Izmir, Turkey
- Robert
M. Kerr Food and Agricultural Products Center, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | | |
Collapse
|
5
|
Papanikolaou G, Centi G, Perathoner S, Lanzafame P. Catalysis for e-Chemistry: Need and Gaps for a Future De-Fossilized Chemical Production, with Focus on the Role of Complex (Direct) Syntheses by Electrocatalysis. ACS Catal 2022; 12:2861-2876. [PMID: 35280435 PMCID: PMC8902748 DOI: 10.1021/acscatal.2c00099] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Indexed: 12/29/2022]
Abstract
![]()
The prospects, needs
and limits in current approaches in catalysis
to accelerate the transition to e-chemistry, where
this term indicates a fossil fuel-free chemical production, are discussed.
It is suggested that e-chemistry is a necessary element
of the transformation to meet the targets of net zero emissions by
year 2050 and that this conversion from the current petrochemistry
is feasible. However, the acceleration of the development of catalytic
technologies based on the use of renewable energy sources (indicated
as reactive catalysis) is necessary, evidencing that these are part
of a system of changes and thus should be assessed from this perspective.
However, it is perceived that the current studies in the area are
not properly addressing the needs to develop the catalytic technologies
required for e-chemistry, presenting a series of
relevant aspects and directions in which research should be focused
to develop the framework system transformation necessary to implement e-chemistry.
Collapse
Affiliation(s)
- Georgia Papanikolaou
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| | - Gabriele Centi
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| | - Siglinda Perathoner
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| | - Paola Lanzafame
- University of Messina, Dept. ChiBioFarAm, ERIC aisbl and CASPE/INSTM, V. le F. Stagno d’ Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
6
|
Centi G, Perathoner S. Redesign chemical processes to substitute the use of fossil fuels: A viewpoint of the implications on catalysis. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Xu Q, Jiang H, Duan X, Jiang Z, Hu Y, Boettcher SW, Zhang W, Guo S, Li C. Fluorination-enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation. NANO LETTERS 2021; 21:492-499. [PMID: 33258608 DOI: 10.1021/acs.nanolett.0c03950] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Developing low-cost and efficient electrocatalysts to accelerate oxygen evolution reaction (OER) kinetics is vital for water and carbon-dioxide electrolyzers. The fastest-known water oxidation catalyst, Ni(Fe)OxHy, usually produced through an electrochemical reconstruction of precatalysts under alkaline condition, has received substantial attention. However, the reconstruction in the reported catalysts usually leads to a limited active layer and poorly controlled Fe-activated sites. Here, we demonstrate a new electrochemistry-driven F-enabled surface-reconstruction strategy for converting the ultrathin NiFeOxFy nanosheets into an Fe-enriched Ni(Fe)OxHy phase. The activated electrocatalyst shows a low OER overpotential of 218 ± 5 mV at 10 mA cm-2 and a low Tafel slope of 31 ± 4 mV dec-1, which is among the best for NiFe-based OER electrocatalysts. Such superior performance is caused by the effective formation of the Fe-enriched Ni(Fe)OxHy active-phase that is identified by operando Raman spectroscopy and the substantially improved surface wettability and gas-bubble-releasing behavior.
Collapse
Affiliation(s)
- Qiucheng Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuezhi Duan
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Yanjie Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shannon W Boettcher
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Weiyu Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Khan I, Luo M, Guo L, Khan S, Wang C, Khan A, Saeed M, Zaman S, Qi K, Liu QL. Enhanced visible-light photoactivities of porous LaFeO 3 by synchronously doping Ni 2+ and coupling TS-1 for CO 2 reduction and 2,4,6-trinitrophenol degradation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01112j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
TOC showing the enhanced visible-light photoactivities of porous LaFeO3 by synchronously doping with Ni2+ and coupling with TS-1 for CO2 reduction and 2,4,6-trinitrophenol degradation.
Collapse
Affiliation(s)
- Iltaf Khan
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, P. R. China
- Beijing Academy of Safety Engineering and Technology, 19 Qing-Yuan North Road, Daxing District, Beijing, 102617, China
- School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Mingsheng Luo
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, P. R. China
- Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology, Beijing 102617, China
- Beijing Academy of Safety Engineering and Technology, 19 Qing-Yuan North Road, Daxing District, Beijing, 102617, China
| | - Lin Guo
- School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
| | - Shoaib Khan
- Department of Horticulture, Jiangxi Agricultural University, Nanchang, China
| | - Chunjuan Wang
- College of Agriculture, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Aftab Khan
- College of Agriculture, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Muhmmad Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Saeed Zaman
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Kezhen Qi
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Qing long Liu
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, P. R. China
| |
Collapse
|
9
|
Madrid JCM, Ghuman KK. Disorder in energy materials and strategies to model it. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2020.1848458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Jose Carlos Madrid Madrid
- Centre Énergie Matériaux Télécommunications, Institut National De La Recherché, Varennes, Quebec, Canada
| | - Kulbir Kaur Ghuman
- Centre Énergie Matériaux Télécommunications, Institut National De La Recherché, Varennes, Quebec, Canada
| |
Collapse
|
10
|
Prospects for a green methanol thermo-catalytic process from CO2 by using MOFs based materials: A mini-review. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101361] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Akay G, Zhang K, Al-Harrasi WSS, Sankaran RM. Catalytic Plasma Fischer–Tropsch Synthesis Using Hierarchically Connected Porous Co/SiO 2 Catalysts Prepared by Microwave-Induced Co-assembly. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Galip Akay
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7217, United States
- Blacksea Advanced Technology Research and Application Centre (KITAM), Ondokuz Mayis University, 55139 Samsun, Turkey
- Department of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Kui Zhang
- Department of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Wail S. S. Al-Harrasi
- Department of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- Petroleum Development Oman LLC (PDO), Mina Al-Fahal, PC 100, Muscat, Sultanate of Oman
| | - R. Mohan Sankaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7217, United States
| |
Collapse
|
12
|
Plasma Generating—Chemical Looping Catalyst Synthesis by Microwave Plasma Shock for Nitrogen Fixation from Air and Hydrogen Production from Water for Agriculture and Energy Technologies in Global Warming Prevention. Catalysts 2020. [DOI: 10.3390/catal10020152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Simultaneous generation of plasma by microwave irradiation of perovskite or the spinel type of silica supported porous catalyst oxides and their reduction by nitrogen in the presence of oxygen is demonstrated. As a result of plasma generation in air, NOx generation is accompanied by the development of highly heterogeneous regions in terms of chemical and morphological variations within the catalyst. Regions of almost completely reduced catalyst are dispersed within the catalyst oxide, across micron-scale domains. The quantification of the catalyst heterogeneity and evaluation of catalyst structure are studied using Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and XRD. Plasma generating supported spinel catalysts are synthesized using the technique developed by the author (Catalysts; 2016; 6; 80) and BaTiO3 is used to exemplify perovskites. Silica supported catalyst systems are represented as M/Si = X (single catalysts) or as M(1)/M(2)/Si = X/Y/Z (binary catalysts) where M; M(1) M(2) = Cr; Mn; Fe; Co; Cu and X, Y, Z are the molar ratio of the catalysts and SiO2 support. Composite porous catalysts are synthesized using a mixture of Co and BaTiO3. In all the catalysts, structural heterogeneity manifests itself through defects, phase separation and increased porosity resulting in the creation of the high activity sites. The chemical heterogeneity results in reduced and oxidized domains and in very large changes in catalyst/support ratio. High electrical potential activity within BaTiO3 particles is observed through the formation of electrical treeing. Plasma generation starts as soon as the supported catalyst is synthesized. Two conditions for plasma generation are observed: Metal/Silica molar ratio should be > 1/2 and the resulting oxide should be spinel type; represented as MaOb (a = 3; b = 4 for single catalyst). Composite catalysts are represented as {M/Si = X}/BaTiO3 and obtained from the catalyst/silica precursor fluid with BaTiO3 particles which undergo fragmentation during microwave irradiation. Further irradiation causes plasma generation, NOx formation and lattice oxygen depletion. Partially reduced spinels are represented as MaOb–c. These reactions occur through a chemical looping process in micron-scale domains on the porous catalyst surface. Therefore; it is possible to scale-up this process to obtain NOx from MaOb for nitric acid production and H2 generation from MaOb–c by catalyst re-oxidized by water. Re-oxidation by CO2 delivers CO as fuel. These findings explain the mechanism of conversion of combustion gases (CO2 + N2) to CO and NOx via a chemical looping process. Mechanism of catalyst generation is proposed and the resulting structural inhomogeneity is characterized. Plasma generating catalysts also represent a new form of Radar Absorbing Material (RAM) for stealth and protection from radiation in which electromagnetic energy is dissipated by plasma generation and catalytic reactions. These catalytic RAMs can be expected to be more efficient in frequency independent microwave absorption.
Collapse
|
13
|
Gogoi P, Kanna N, Begum P, Deka RC, C. V. V S, Raja T. Controlling and Stabilization of Ru Nanoparticles by Tuning the Nitrogen Content of the Support for Enhanced H2 Production through Aqueous-Phase Reforming of Glycerol. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04063] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pranjal Gogoi
- Catalysis & Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and inovative Research (AcSIR), Gaziabad 201002, Uttar Pradesh, India
| | - Narsimharao Kanna
- Hindustan Petroleum Green R & D Centre, Devangonthi, Bengaluru 560067, India
| | - Pakiza Begum
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Ramesh C. Deka
- Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Satyanarayana C. V. V
- Catalysis & Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Hindustan Petroleum Green R & D Centre, Devangonthi, Bengaluru 560067, India
- Academy of Scientific and inovative Research (AcSIR), Gaziabad 201002, Uttar Pradesh, India
| | - Thirumalaiswamy Raja
- Catalysis & Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and inovative Research (AcSIR), Gaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
14
|
Centi G, Čejka J. Needs and Gaps for Catalysis in Addressing Transitions in Chemistry and Energy from a Sustainability Perspective. CHEMSUSCHEM 2019; 12:621-632. [PMID: 30648784 DOI: 10.1002/cssc.201802637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Catalysis is undergoing a major transition resulting from significant changes in chemical and energy production. To honor the 50th anniversary of establishing the Jerzy Haber Institute of Catalysis and Surface Chemistry, this Essay discusses, from a forward-looking, personal and somewhat provocative perspective, the needs and gaps of catalysis to address the ongoing transition in chemistry and energy from a sustainability perspective. The focus is on a few selected aspects identified as crucial: i) The precise synthesis of catalytic materials, particularly focusing on mesoporous molecular sieves, metal-organic frameworks, and zeolites (particularly two-dimensional type); ii) advanced catalyst characterization methods; iii) new concepts and approaches needed in catalysis to meet the demands of a field of energy and chemistry in transition.
Collapse
Affiliation(s)
- Gabriele Centi
- University of Messina, ERIC aisbl and CASPE/INSTM, Dept.s MIFT-Industrial Chemistry, V.le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Jiří Čejka
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Science, Dolejškova 3, 182 23, Prague 8, Czech Republic
- Current address: Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43, Prague 2, Czech Republic
| |
Collapse
|
15
|
Centi G, Iaquaniello G, Perathoner S. Chemical engineering role in the use of renewable energy and alternative carbon sources in chemical production. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42480-019-0006-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|