1
|
Panwar P, Rawat S, Yadav R, He JZ, Wong HPH, Sastri CV, de Visser SP. Influence of Asymmetrical Ligand Substitution on the Formation, Stability, and Reactivity of Ruthenium(III)-Hypochlorite Complexes. Chemistry 2025; 31:e202403892. [PMID: 39789915 DOI: 10.1002/chem.202403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
Hypohalites are commonly generated in biological systems, mostly with functions related to defense and immune system response. These hypohalites can bind to metal centers and are known for their strong oxidizing properties that play crucial roles in various biological processes. Herein, we report the synthesis, characterization and reactivity of novel biomimetic Ru(III)-hypochlorite complexes and focus the work on the electronic effects associated with the incorporation of methyl groups in a pentadentate ligand framework in an asymmetric fashion. The intermediates are stable at room temperature and were characterized by mass spectrometry, UV-vis absorption, resonance Raman and EPR spectroscopy. We show for the first time that the resultant ruthenium-hypochlorite adducts function as an electrophilic oxidant and efficiently catalyze hydrogen atom abstraction reactions from phenol and oxygen atom transfer reactions with dimethylsulfide.
Collapse
Affiliation(s)
- Payal Panwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Shreya Rawat
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Jason Z He
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Henrik P H Wong
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Sam P de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
2
|
Bhandary D, de Visser SP, Mukherjee G. Implications of non-native metal substitution in carbonic anhydrase - engineered enzymes and models. Chem Commun (Camb) 2025; 61:612-626. [PMID: 39655561 DOI: 10.1039/d4cc05003g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The enzyme carbonic anhydrase has been intensely studied over decades as a means to understand the role of zinc in hydrating CO2. The naturally occurring enzyme has also been immobilized on distinct heterogeneous platforms, which results in a different hybrid class of catalysts that are useful for the adsorption and hydration of CO2. However, the reusability and robustness of such natural and immobilized systems are substantially affected when tested under industrial conditions, such as high temperature and high flow rate. This led to the generation of model systems in the form of metal-coordination complexes, metal-organic frameworks, metallo-peptide self-assembled supramolecules and nanomaterials that mimic the primary, and, to some extent, secondary coordination sphere of the active site of the natural carbonic anhydrase enzymes. Furthermore, the effects of zinc-substitution by other relevant transition metals in both the naturally occurring enzymes and model systems has been reported. It has been observed that some other transition metal ions in the active site of carbonic anhydrase and its models can also accomplish similar activity, established by various reaction probes and ideas. Herein, we present a comprehensive highlight about substituting zinc in the active site of the modified enzymes and its biomimetic model systems with non-native metal ions and review how they affect the structural orientation and reactivity towards CO2 hydration. In addition, the utility of artificially engineered carbonic anhydrases towards a number of non-natural reactions is also discussed.
Collapse
Affiliation(s)
- Dyuti Bhandary
- Department of Catalysis & Fine Chemicals, CSIR - Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Gourab Mukherjee
- Department of Catalysis & Fine Chemicals, CSIR - Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
3
|
Sahoo L, Panwar P, Sastri CV, de Visser SP. Unraveling Chlorite Oxidation Pathways in Equatorially Heteroatom-Substituted Nonheme Iron Complexes. ACS ORGANIC & INORGANIC AU 2024; 4:673-680. [PMID: 39649995 PMCID: PMC11621950 DOI: 10.1021/acsorginorgau.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 12/11/2024]
Abstract
The first-coordination sphere of catalysts is known to play a crucial role in reaction mechanisms, but details of how equatorial ligands influence the reactivity remain unknown. Heteroatom ligated to the equatorial position of iron centers in nonheme iron metalloenzymes modulates structure and reactivity. To investigate the impact of equatorial heteroatom substitution on chlorite oxidation, we synthesized and characterized three novel mononuclear nonheme iron(II) complexes with a pentadentate bispidine scaffold. These complexes feature systematic substitutions at the equatorial position in the bispidine ligand framework where the pyridine group is replaced with NMe2, SMe, and OMe groups. The three iron(II)-bispidine complexes were subjected to studies in chlorite oxidation reactions as a model pathway for oxygen atom transfer. Chlorine oxyanions, which have the halide in an oxidation state ranging from +1 to +7, have numerous applications but can contaminate water bodies, and this demands urgent environmental remediation. Chlorite, a common precursor to chlorine dioxide, is of particular interest due to the superior antimicrobial activity of chlorine dioxide. Moreover, its generation leads to fewer harmful byproducts in water treatment. Here, we demonstrate that these complexes can produce chlorine dioxide from chlorite in acetate buffer at room temperature and pH 5.0, oxidizing chlorite through the in situ formation of high-valent iron(IV)-oxo intermediates. This study establishes how subtle changes in the coordination sphere around iron can influence the reactivity.
Collapse
Affiliation(s)
- Limashree Sahoo
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
| | - Payal Panwar
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
| | - Chivukula V. Sastri
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
| | - Sam P. de Visser
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Assam 781039, India
- The
Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
4
|
Jana RD, Das A, Samanta R, Banerjee S, Paul S, Paine TK. Stereoelectronic Tuning of Bioinspired Nonheme Iron(IV)-Oxo Species by Amide Groups in Primary and Secondary Coordination Spheres for Selective Oxygenation Reactions. Inorg Chem 2024; 63:21042-21058. [PMID: 39433290 DOI: 10.1021/acs.inorgchem.4c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Two mononuclear iron(II) complexes, [(6-amide2-BPMEN)FeII](OTf)2 (1) and [(6-amide-Me-BPMEN)FeII(OTf)](OTf) (2), supported by two BPMEN-derived (BPMEN = N1,N2-dimethyl-N1,N2-bis(pyridine-2-yl-methyl)ethane-1,2-diamine) ligands bearing one or two amide functionalities have been isolated to study their reactivity in the oxygenation of C-H and C═C bonds using isopropyl 2-iodoxybenzoate (iPr-IBX ester) as the oxidant. Both 1 and 2 contain six-coordinate high-spin iron(II) centers in the solid state and in solution. The 6-amide2-BPMEN ligand stabilizes an S = 1 iron(IV)-oxo intermediate, [(6-amide2-BPMEN)FeIV(O)]2+ (1A). The oxidant (1A) oxygenates the C-H and C═C bonds with a high selectivity. Oxidant 1A, upon treatment with 2,6-lutidine, is transformed into another oxidant [{(6-amide2-BPMEN)-(H)}FeIV(O)]+ (1B) through deprotonation of an amide group, resulting in a stronger equatorial ligand field and subsequent stabilization of the triplet ground state. In contrast, no iron-oxo species could be observed from complex 2 and [(6-Me2-BPMEN)FeII(OTf)2] (3) under similar experimental conditions. The iron(IV)-oxo oxidant 1A shows the highest A/K selectivity in cyclohexane oxidation and 3°/2° selectivity in adamantane oxidation reported for any synthetic nonheme iron(IV)-oxo complexes. Theoretical investigation reveals that the hydrogen bonding interaction between the -NH group of the noncoordinating amide group and Fe═O core smears out the equatorial charge density, reducing the triplet-quintet splitting, and thus helping complex 1A to achieve better reactivity.
Collapse
Affiliation(s)
- Rahul Dev Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| | - Rajib Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| | - Satadal Paul
- Department of Chemistry, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700009, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, Jadavpur 700032, India
| |
Collapse
|
5
|
Török P, Lakk-Bogáth D, Unjaroen D, Browne WR, Kaizer J. Effect of monodentate heterocycle co-ligands on the μ-1,2-peroxo-diiron(III) mediated aldehyde deformylation reactions. J Inorg Biochem 2024; 258:112620. [PMID: 38824901 DOI: 10.1016/j.jinorgbio.2024.112620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Peroxo-diiron(III) species are present in the active sites of many metalloenzymes that carry out challenging organic transformations. The reactivity of these species is influenced by various factors, such as the structure and topology of the supporting ligands, the identity of the axial and equatorial co-ligands, and the oxidation states of the metal ion(s). In this study, we aim to diversify the importance of equatorial ligands in controlling the reactivity of peroxo-diiron(III) species. As a model compound, we chose the previously published and fully characterized [(PBI)2(CH3CN)FeIII(μ-O2)FeIII(CH3CN)(PBI)2]4+ complex, where the steric effect of the four PBI ligands is minimal, so the labile CH3CN molecules easily can be replaced by different monodentate co-ligands (substituted pyridines and N-donor heterocyclic compounds). Thus, their effect on the electronic and spectral properties of peroxo-divas(III) intermediates could be easily investigated. The relationship between structure and reactivity was also investigated in the stoichiometric deformylation of PPA mediated by peroxo-diiron(III) complexes. It was found that the deformylation rates are influenced by the Lewis acidity and redox properties of the metal centers, and showed a linear correlation with the FeIII/FeII redox potentials (in the range of 197 to 415 mV).
Collapse
Affiliation(s)
- Patrik Török
- Research Group of Bioorganic and Biocoordination Chemistry, Universtiy of Pannonia, 8201 Veszprém, Hungary
| | - Dóra Lakk-Bogáth
- Research Group of Bioorganic and Biocoordination Chemistry, Universtiy of Pannonia, 8201 Veszprém, Hungary
| | - Duenpen Unjaroen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - József Kaizer
- Research Group of Bioorganic and Biocoordination Chemistry, Universtiy of Pannonia, 8201 Veszprém, Hungary.
| |
Collapse
|
6
|
Török P, Kaizer J. Effect of Substituted Pyridine Co-Ligands and (Diacetoxyiodo)benzene Oxidants on the Fe(III)-OIPh-Mediated Triphenylmethane Hydroxylation Reaction. Molecules 2024; 29:3842. [PMID: 39202921 PMCID: PMC11357111 DOI: 10.3390/molecules29163842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Iodosilarene derivatives (PhIO, PhI(OAc)2) constitute an important class of oxygen atom transfer reagents in organic synthesis and are often used together with iron-based catalysts. Since the factors controlling the ability of iron centers to catalyze alkane hydroxylation are not yet fully understood, the aim of this report is to develop bioinspired non-heme iron catalysts in combination with PhI(OAc)2, which are suitable for performing C-H activation. Overall, this study provides insight into the iron-based ([FeII(PBI)3(CF3SO3)2] (1), where PBI = 2-(2-pyridyl)benzimidazole) catalytic and stoichiometric hydroxylation of triphenylmethane using PhI(OAc)2, highlighting the importance of reaction conditions including the effect of the co-ligands (para-substituted pyridines) and oxidants (para-substituted iodosylbenzene diacetates) on product yields and reaction kinetics. A number of mechanistic studies have been carried out on the mechanism of triphenylmethane hydroxylation, including C-H activation, supporting the reactive intermediate, and investigating the effects of equatorial co-ligands and coordinated oxidants. Strong evidence for the electrophilic nature of the reaction was observed based on competitive experiments, which included a Hammett correlation between the relative reaction rate (logkrel) and the σp (4R-Py and 4R'-PhI(OAc)2) parameters in both stoichiometric (ρ = +0.87 and +0.92) and catalytic (ρ = +0.97 and +0.77) reactions. The presence of [(PBI)2(4R-Py)FeIIIOIPh-4R']3+ intermediates, as well as the effect of co-ligands and coordinated oxidants, was supported by their spectral (UV-visible) and redox properties. It has been proven that the electrophilic nature of iron(III)-iodozilarene complexes is crucial in the oxidation reaction of triphenylmethane. The hydroxylation rates showed a linear correlation with the FeIII/FeII redox potentials (in the range of -350 mV and -524 mV), which suggests that the Lewis acidity and redox properties of the metal centers greatly influence the reactivity of the reactive intermediates.
Collapse
Affiliation(s)
| | - József Kaizer
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8201 Veszprém, Hungary;
| |
Collapse
|
7
|
Rydel-Ciszek K, Sobkowiak A. The [(Bn-tpen)Fe II] 2+ Complex as a Catalyst for the Oxidation of Cyclohexene and Limonene with Dioxygen. Molecules 2024; 29:3755. [PMID: 39202835 PMCID: PMC11357577 DOI: 10.3390/molecules29163755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
[(Bn-tpen)FeII(MeCN)](ClO4)2, containing the pentadentate Bn-tpen-N-benzyl-N,N',N'-tris(2-pyridylmethyl)-1,2-diaminoethane ligand, was studied in the oxygenation of cyclohexene and limonene using low-pressure dioxygen (0.2 atm air or 1 atm pure O2) in acetonitrile. 2-Cyclohexen-1-one and 2-cyclohexen-1-ol are the main products of cyclohexene oxidations, with cyclohexene oxide as a minor product. Limonene is oxidized to limonene oxide, carvone, and carveol. Other oxidation products such as perillaldehyde and perillyl alcohol are found in trace amounts. This catalyst is slightly less active than the previously reported [(N4Py)FeII(MeCN)](ClO4)2 (N4Py-N,N-bis(2-pyridylmethyl)-N-(bis-2-pyridylmethyl)amine). Based on cyclic voltammetry experiments, it is postulated that [(Bn-tpen)FeIV=O]2+ is the active species. The induction period of approx. 3 h during cyclohexene oxygenation is probably caused by deactivation of the reactive Fe(IV)=O species by the parent Fe(II) complex. Equimolar mixtures of Fe(II) salt and the ligand (in situ-formed catalyst) gave catalytic performance similar to that of the synthesized catalyst.
Collapse
Affiliation(s)
- Katarzyna Rydel-Ciszek
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Andrzej Sobkowiak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
8
|
Satpathy JK, Yadav R, Bagha UK, Kumar D, Sastri CV, de Visser SP. Enhanced Reactivity through Equatorial Sulfur Coordination in Nonheme Iron(IV)-Oxo Complexes: Insights from Experiment and Theory. Inorg Chem 2024; 63:6752-6766. [PMID: 38551622 DOI: 10.1021/acs.inorgchem.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sulfur ligation in metalloenzymes often gives the active site unique properties, whether it is the axial cysteinate ligand in the cytochrome P450s or the equatorial sulfur/thiol ligation in nonheme iron enzymes. To understand sulfur ligation to iron complexes and how it affects the structural, spectroscopic, and intrinsic properties of the active species and the catalysis of substrates, we pursued a systematic study and compared sulfur with amine-ligated iron(IV)-oxo complexes. We synthesized and characterized a biomimetic N4S-ligated iron(IV)-oxo complex and compared the obtained results with an analogous N5-ligated iron(IV)-oxo complex. Our work shows that the amine for sulfur replacement in the equatorial ligand framework leads to a rate enhancement for oxygen atom and hydrogen atom transfer reactions. Moreover, the sulfur-ligated iron(IV)-oxo complex reacts through a different reaction mechanism as compared to the N5-ligated iron(IV)-oxo complex, where the former reacts through hydride transfer with the latter reacting via radical pathways. We show that the reactivity differences are caused by a dramatic change in redox potential between the two complexes. Our studies highlight the importance of implementing a sulfur ligand into the equatorial ligand framework of nonheme iron(IV)-oxo complexes and how it affects the physicochemical properties of the oxidant and its reactivity.
Collapse
Affiliation(s)
- Jagnyesh K Satpathy
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Umesh K Bagha
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Devesh Kumar
- Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sam P de Visser
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
9
|
Lakk-Bogáth D, Pintarics D, Török P, Kaizer J. Influence of Equatorial Co-Ligands on the Reactivity of LFe IIIOIPh. Molecules 2023; 29:58. [PMID: 38202641 PMCID: PMC10779584 DOI: 10.3390/molecules29010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Previous biomimetic studies clearly proved that equatorial ligands significantly influence the redox potential and thus the stability/reactivity of biologically important oxoiron intermediates; however, no such studies were performed on FeIIIOIPh species. In this study, the influence of substituted pyridine co-ligands on the reactivity of iron(III)-iodosylbenzene adduct has been investigated in sulfoxidation and epoxidation reactions. Selective oxidation of thioanisole, cis-cyclooctene, and cis- and trans-stilbene in the presence of a catalytic amount of [FeII(PBI)3](OTf)2 with PhI(OAc)2 provide products in good to excellent yields through an FeIIIOIPh intermediate depending on the co-ligand (4R-Py) used. Several mechanistic studies were performed to gain more insight into the mechanism of oxygen atom transfer (OAT) reactions to support the reactive intermediate and investigate the effect of the equatorial co-ligands. Based on competitive experiments, including a linear free-energy relationship between the relative reaction rates (logkrel) and the σp (4R-Py) parameters, strong evidence has been observed for the electrophilic character of the reactive species. The presence of the [(PBI)2(4R-Py)FeIIIOIPh]3+ intermediates and the effect of the co-ligands was also supported by UV-visible measurements, including the color change from red to green and the hypsochromic shifts in the presence of co-ligands. This is another indication that the title iron(III)-iodosylbenzene adduct is able to oxygenate sulfides and alkenes before it is transformed into the oxoiron form by cleavage of the O-I bond.
Collapse
Affiliation(s)
| | | | | | - József Kaizer
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8201 Veszprém, Hungary; (D.L.-B.); (D.P.); (P.T.)
| |
Collapse
|
10
|
Panda S, Phan H, Karlin KD. Heme-copper and Heme O 2-derived synthetic (bioinorganic) chemistry toward an understanding of cytochrome c oxidase dioxygen chemistry. J Inorg Biochem 2023; 249:112367. [PMID: 37742491 PMCID: PMC10615892 DOI: 10.1016/j.jinorgbio.2023.112367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Cytochrome c oxidase (CcO), also widely known as mitochondrial electron-transport-chain complex IV, is a multi-subunit transmembrane protein responsible for catalyzing the last step of the electron transport chain, dioxygen reduction to water, which is essential to the establishment and maintenance of the membrane proton gradient that drives ATP synthesis. Although many intermediates in the CcO catalytic cycle have been spectroscopically and/or computationally authenticated, the specifics regarding the IP intermediate, hypothesized to be a heme-Cu (hydro)peroxo species whose O-O bond homolysis is supported by a hydrogen-bonding network of water molecules, are largely obscured by the fast kinetics of the A (FeIII-O2•-/CuI/Tyr) → PM (FeIV=O/CuII-OH/Tyr•) step. In this review, we have focused on the recent advancements in the design, development, and characterization of synthetic heme-peroxo‑copper model complexes, which can circumvent the abovementioned limitation, for the investigation of the formation of IP and its O-O cleavage chemistry. Novel findings regarding (a) proton and electron transfer (PT/ET) processes, together with their contributions to exogenous phenol induced O-O cleavage, (b) the stereo-electronic tunability of the secondary coordination sphere (especially hydrogen-bonding) on the geometric and spin state alteration of the heme-peroxo‑copper unit, and (c) a plausible mechanism for the Tyr-His cofactor biogenesis, are discussed in great detail. Additionally, since the ferric-superoxide and the ferryl-oxo (Compound II) species are critically involved in the CcO catalytic cycle, this review also highlights a few fundamental aspects of these heme-only (i.e., without copper) species, including the structural and reactivity influences of electron-donating trans-axial ligands and Lewis acid-promoted H-bonding.
Collapse
Affiliation(s)
- Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hai Phan
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
11
|
Li Y, Singh R, Sinha A, Lisensky GC, Haukka M, Nilsson J, Yiga S, Demeshko S, Gross SJ, Dechert S, Gonzalez A, Farias G, Wendt OF, Meyer F, Nordlander E. Nonheme Fe IV═O Complexes Supported by Four Pentadentate Ligands: Reactivity toward H- and O- Atom Transfer Processes. Inorg Chem 2023; 62:18338-18356. [PMID: 37913548 PMCID: PMC10647104 DOI: 10.1021/acs.inorgchem.3c02526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
Four new pentadentate N5-donor ligands, [N-(1-methyl-2-imidazolyl)methyl-N-(2-pyridyl)-methyl-N-(bis-2-pyridylmethyl)-amine] (L1), [N-bis(1-methyl-2-imidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L2), (N-(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine (L3), and N,N-bis(isoquinolin-3-ylmethyl)-1,1-di(pyridin-2-yl)methanamine (L4), have been synthesized based on the N4Py ligand framework, where one or two pyridyl arms of the N4Py parent are replaced by (N-methyl)imidazolyl or N-(isoquinolin-3-ylmethyl) moieties. Using these four pentadentate ligands, the mononuclear complexes [FeII(CH3CN)(L1)]2+ (1a), [FeII(CH3CN)(L2)]2+ (2a), [FeII(CH3CN)(L3)]2+ (3a), and [FeII(CH3CN)(L4)]2+ (4a) have been synthesized and characterized. The half-wave potentials (E1/2) of the complexes become more positive in the order: 2a < 1a < 4a ≤ 3a ≤ [Fe(N4Py)(CH3CN)]2+. The order of redox potentials correlates well with the Fe-Namine distances observed by crystallography, which are 2a > 1a ≥ 4a > 3a ≥ [Fe(N4Py)(CH3CN)]2+. The corresponding ferryl complexes [FeIV(O)(L1)]2+ (1b), [FeIV(O)(L2)]2+ (2b), [FeIV(O)(L3)]2+ (3b), and [FeIV(O)(L4)]2+ (4b) were prepared by the reaction of the ferrous complexes with isopropyl 2-iodoxybenzoate (IBX ester) in acetonitrile. The greenish complexes 3b and 4b were also isolated in the solid state by the reaction of the ferrous complexes in CH3CN with ceric ammonium nitrate in water. Mössbauer spectroscopy and magnetic measurements (using superconducting quantum interference device) show that the four complexes 1b, 2b, 3b, and 4b are low-spin (S = 1) FeIV═O complexes. UV/vis spectra of the four FeIV═O complexes in acetonitrile show typical long-wavelength absorptions of around 700 nm, which are expected for FeIV═O complexes with N4Py-type ligands. The wavelengths of these absorptions decrease in the following order: 721 nm (2b) > 706 nm (1b) > 696 nm (4b) > 695 nm (3b) = 695 nm ([FeIV(O) (N4Py)]2+), indicating that the replacement of the pyridyl arms with (N-methyl) imidazolyl moieties makes L1 and L2 exert weaker ligand fields than the parent N4Py ligand, while the ligand field strengths of L3 and L4 are similar to the N4Py parent despite the replacement of the pyridyl arms with N-(isoquinolin-3-ylmethyl) moieties. Consequently, complexes 1b and 2b tend to be less stable than the parent [FeIV(O)(N4Py)]2+ complex: the half-life sequence at room temperature is 1.67 h (2b) < 16 h (1b) < 45 h (4b) < 63 h (3b) ≈ 60 h ([FeIV(O)(N4Py)]2+). Compared to the parent complex, 1b and 2b exhibit enhanced reactivity in both the oxidation of thioanisole in the oxygen atom transfer (OAT) reaction and the oxygenation of C-H bonds of aromatic and aliphatic substrates, presumed to occur via an oxygen rebound process. Furthermore, the second-order rate constants for hydrogen atom transfer (HAT) reactions affected by the ferryl complexes can be directly related to the C-H bond dissociation energies of a range of substrates that have been studied. Using either IBX ester or H2O2 as an oxidant, all four new FeII complexes display good performance in catalytic reactions involving both HAT and OAT reactions.
Collapse
Affiliation(s)
- Yong Li
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Reena Singh
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Arup Sinha
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - George C. Lisensky
- Department
of Chemistry, Beloit College, 700 College Street, Beloit, Wisconsin 53511, United States
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box-35, Jyväskylä FI-40014, Finland
| | - Justin Nilsson
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| | - Solomon Yiga
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Serhiy Demeshko
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Sophie Jana Gross
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Sebastian Dechert
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Ana Gonzalez
- MAX IV Laboratory, Lund University, P.O.
Box 118, Lund SE-221 00, Sweden
| | - Giliandro Farias
- Department
of Chemistry, Federal University of Santa
Catarina, Florianópolis 88040900, Santa Catarina, Brazil
| | - Ola F. Wendt
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Franc Meyer
- Georg-August
Universität Göttingen, Institut
für Anorganische Chemie, Tammanstrasse 4, Göttingen D-37077, Germany
| | - Ebbe Nordlander
- Chemical
Physics, Department of Chemistry, Lund University, Box 124, Lund SE-221 00, Sweden
| |
Collapse
|
12
|
Bio-Inspired Iron Pentadentate Complexes as Dioxygen Activators in the Oxidation of Cyclohexene and Limonene. Molecules 2023; 28:molecules28052240. [PMID: 36903486 PMCID: PMC10004738 DOI: 10.3390/molecules28052240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
The use of dioxygen as an oxidant in fine chemicals production is an emerging problem in chemistry for environmental and economical reasons. In acetonitrile, the [(N4Py)FeII]2+ complex, [N4Py-N,N-bis(2-pyridylmethyl)-N-(bis-2-pyridylmethyl)amine] in the presence of the substrate activates dioxygen for the oxygenation of cyclohexene and limonene. Cyclohexane is oxidized mainly to 2-cyclohexen-1-one, and 2-cyclohexen-1-ol, cyclohexene oxide is formed in much smaller amounts. Limonene gives as the main products limonene oxide, carvone, and carveol. Perillaldehyde and perillyl alcohol are also present in the products but to a lesser extent. The investigated system is twice as efficient as the [(bpy)2FeII]2+/O2/cyclohexene system and comparable to the [(bpy)2MnII]2+/O2/limonene system. Using cyclic voltammetry, it has been shown that, when the catalyst, dioxgen, and substrate are present simultaneously in the reaction mixture, the iron(IV) oxo adduct [(N4Py)FeIV=O]2+ is formed, which is the oxidative species. This observation is supported by DFT calculations.
Collapse
|
13
|
Gorantla KR, Mallik BS. Non-heme oxoiron complexes as active intermediates in the water oxidation process with hydrogen/oxygen atom transfer reactions. Dalton Trans 2022; 51:11899-11908. [PMID: 35876181 DOI: 10.1039/d2dt01295b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we explore the water oxidation process with the help of density functional theory. The formation of an oxygen-oxygen bond is crucial in the water oxidation process. Here, we report the formation of the oxygen-oxygen bond by the N5-coordinate oxoiron species with a higher oxidation state of FeIV and FeV. This bond formation is studied through the nucleophilic addition of water molecules and the transfer of the oxygen atom from meta-chloroperbenzoic acid (mCPBA). Our study reveals that the oxygen-oxygen bond formation by reacting mCPBA with FeVO requires less activation barrier (13.7 kcal mol-1) than the other three pathways. This bond formation by the oxygen atom transfer (OAT) pathway is more favorable than that achieved by the hydrogen atom transfer (HAT) pathway. In both cases, the oxygen-oxygen bond formation occurs by interacting the σ*dz2-2pz molecular orbital of the iron-oxo intermediate with the 2px orbital of the oxygen atom. From this study, we understand that the oxygen-oxygen bond formation by FeIVO with the OAT process is also feasible (16 kcal mol-1), suggesting that FeVO may not always be required for the water oxidation process by non-heme N5-oxoiron. After the oxygen-oxygen bond formation, the release of the dioxygen molecule occurs with the addition of the water molecule. The release of dioxygen requires a barrier of 7.0 kcal mol-1. The oxygen-oxygen bond formation is found to be the rate-determining step.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy-502285, Telangana, India.
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy-502285, Telangana, India.
| |
Collapse
|
14
|
Bagha UK, Satpathy JK, Mukherjee G, Barman P, Kumar D, de Visser SP, Sastri CV. Oxidative dehalogenation of halophenols by high-valent nonheme iron(IV)-oxo intermediates. Faraday Discuss 2022; 234:58-69. [PMID: 35170590 DOI: 10.1039/d1fd00064k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mononuclear high-valent iron(IV)-oxo intermediates are excellent oxidants towards oxygenation reactions by heme and nonheme metalloenzymes and their model systems. One of the most important functions of these intermediates in nature is to detoxify various environmental pollutants. Organic substrates, such as halogenated phenols, are known to be water pollutants which can be degraded to their less hazardous forms through an oxidation reaction by iron(IV)-oxo complexes. Metalloproteins in nature utilize various types of second-coordination sphere interactions to anchor the substrate in the vicinity of the active site. This concept of substrate-binding is well-known for natural enzymes, but is elusive for the relevant biomimetic model systems. Herein, we report the oxidative reactivity patterns of an iron(IV)-oxo intermediate, [FeIV(O)(2PyN2Q)]2+, (2PyN2Q = 1,1-di(pyridin-2yl)-N,N-bis(quinolin-2-ylmethyl)methanamine) with a series of mono-, di- and tri-halophenols. A detailed experimental study shows that the dehalogenation reactions of the halophenols by such iron(IV)-oxo intermediates proceed via an initial hydrogen atom abstraction from the phenolic O-H group. Furthermore, based on the size and nucleophilicity of the halophenol, an intermediate substrate-bound species forms that is a phenolate adduct to the ferric species, which thereafter leads to the formation of the corresponding products.
Collapse
Affiliation(s)
- Umesh Kumar Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | | | - Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India. .,Department of Chemical Science, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai, 400005, India
| | - Prasenjit Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India. .,Department of Chemistry, Kaliyaganj College, West Bengal, 733129, India
| | - Devesh Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| | - Sam P de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India. .,The Manchester Institute of Biotechnology, Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
15
|
Comba P, Nunn G, Scherz F, Walton PH. Intermediate-spin iron(IV)-oxido species with record reactivity. Faraday Discuss 2022; 234:232-244. [PMID: 35156976 DOI: 10.1039/d1fd00073j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nonheme iron(IV)-oxido complex trans-N3-[(L1)FeIVO(Cl)]+, where L1 is a derivative of the tetradentate bispidine 2,4-di(pyridine-2-yl)-3,7-diazabicyclo[3.3.1]nonane-1-one, has an S = 1 electronic ground state and is the most reactive nonheme iron model system known so far, of a similar order of reactivity as nonheme iron enzymes (C-H abstraction of cyclohexane, -90 °C (propionitrile), t1/2 = 3.5 s). The reaction with cyclohexane selectively leads to chlorocyclohexane, but "cage escape" at the [(L1)FeIII(OH)(Cl)]+/cyclohexyl radical intermediate lowers the productivity. Ligand field theory is used herein to analyze the d-d transitions of [(L1)FeIVO(X)]n+ (X = Cl-, Br-, MeCN) in comparison with the thoroughly characterized ferryl complex of tetramethylcyclam (TMC = L2; [(L2)FeIVO(MeCN)]2+). The ligand field parameters and d-d transition energies are shown to provide important information on the triplet-quintet gap and its correlation with oxidation reactivity.
Collapse
Affiliation(s)
- Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany. .,Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Germany
| | - George Nunn
- Department of Chemistry, University of York, Heslington, YORK, YO10 5DD, UK
| | - Frederik Scherz
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, D-69120 Heidelberg, Germany.
| | - Paul H Walton
- Department of Chemistry, University of York, Heslington, YORK, YO10 5DD, UK
| |
Collapse
|
16
|
Munshi S, Sinha A, Yiga S, Banerjee S, Singh R, Hossain MK, Haukka M, Valiati AF, Huelsmann RD, Martendal E, Peralta R, Xavier F, Wendt OF, Paine TK, Nordlander E. Hydrogen-atom and oxygen-atom transfer reactivities of iron(IV)-oxo complexes of quinoline-substituted pentadentate ligands. Dalton Trans 2022; 51:870-884. [PMID: 34994361 DOI: 10.1039/d1dt03381f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of iron(II) complexes with the general formula [FeII(L2-Qn)(L)]n+ (n = 1, L = F-, Cl-; n = 2, L = NCMe, H2O) have been isolated and characterized. The X-ray crystallographic data reveals that metal-ligand bond distances vary with varying ligand field strengths of the sixth ligand. While the complexes with fluoride, chloride and water as axial ligand are high spin, the acetonitrile-coordinated complex is in a mixed spin state. The steric bulk of the quinoline moieties forces the axial ligands to deviate from the Fe-Naxial axis. A higher deviation/tilt is noted for the high spin complexes, while the acetonitrile coordinated complex displays least deviation. This deviation from linearity is slightly less in the analogous low-spin iron(II) complex [FeII(L1-Qn)(NCMe)]2+ of the related asymmetric ligand L1-Qn due to the presence of only one sterically demanding quinoline moiety. The two iron(II)-acetonitrile complexes [FeII(L2-Qn)(NCMe)]2+ and [FeII(L1-Qn)(NCMe)]2+ generate the corresponding iron(IV)-oxo species with higher thermal stability of the species supported by the L1-Qn ligand. The crystallographic and spectroscopic data for [FeIV(O)(L1-Qn)](ClO4)2 bear resemblance to other crystallographically characterized S = 1 iron(IV)-oxo complexes. The hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactivities of both the iron(IV)-oxo complexes were investigated, and a Box-Behnken multivariate optimization of the parameters for catalytic oxidation of cyclohexane by [FeII(L2-Qn)(NCMe)]2+ using hydrogen peroxide as the terminal oxidant is presented. An increase in the average Fe-N bond length in [FeII(L1-Qn)(NCMe)]2+ is also manifested in higher HAT and OAT rates relative to the other reported complexes of ligands based on the N4Py framework. The results reported here confirm that the steric influence of the ligand environment is of critical importance for the reactivity of iron(IV)-oxo complexes, but additional electronic factors must influence the reactivity of iron-oxo complexes of N4Py derivatives.
Collapse
Affiliation(s)
- Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| | - Arup Sinha
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden. .,Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, India
| | - Solomon Yiga
- Center for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden. .,Department of Chemistry, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| | - Reena Singh
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Md Kamal Hossain
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Box 35, FI-400 14, Jyväskylä, Finland
| | - Andrei Felipe Valiati
- Department of Chemistry, LABINC, Universidade Federal de Santa Catarina (UFSC), 88040-900 Florianopolis, Santa Catarina, Brazil
| | - Ricardo Dagnoni Huelsmann
- Department of Chemistry, Center for Technological Sciences, Universidade do Estado de Santa Catarina (UDESC), 89219-710 Joinville, Santa Catarina, Brazil
| | - Edmar Martendal
- Department of Chemistry, Center for Technological Sciences, Universidade do Estado de Santa Catarina (UDESC), 89219-710 Joinville, Santa Catarina, Brazil
| | - Rosely Peralta
- Department of Chemistry, LABINC, Universidade Federal de Santa Catarina (UFSC), 88040-900 Florianopolis, Santa Catarina, Brazil
| | - Fernando Xavier
- Department of Chemistry, Center for Technological Sciences, Universidade do Estado de Santa Catarina (UDESC), 89219-710 Joinville, Santa Catarina, Brazil
| | - Ola F Wendt
- Center for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Tapan K Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
17
|
Monika, Aman, Ansari A. Theoretical insights for generation of terminal metal-oxo species and involvement of the “oxo wall”. NEW J CHEM 2022. [DOI: 10.1039/d2nj03098e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work is based on a deep insight on the formation of high-valent metal-oxo by the O⋯O bond cleavage of metal hydroperoxo species and our theoretical findings also illustrate the concept “oxo wall”.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry Central University of Haryana, 123031, India
| | - Aman
- Department of Chemistry Central University of Haryana, 123031, India
| | - Azaj Ansari
- Department of Chemistry Central University of Haryana, 123031, India
| |
Collapse
|
18
|
Gu AY, Musgrave C, Goddard WA, Hoffmann MR, Colussi AJ. Role of Ferryl Ion Intermediates in Fast Fenton Chemistry on Aqueous Microdroplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14370-14377. [PMID: 34213313 DOI: 10.1021/acs.est.1c01962] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the aqueous environment, FeII ions enhance the oxidative potential of ozone and hydrogen peroxide by generating the reactive oxoiron species (ferryl ion, FeIVO2+) and hydroxyl radical (·OH) via Fenton chemistry. Herein, we investigate factors that control the pathways of these reactive intermediates in the oxidation of dimethyl sulfoxide (Me2SO) in FeII solutions reacting with O3 in both bulk-phase water and on the surfaces of aqueous microdroplets. Electrospray ionization mass spectrometry is used to quantify the formation of dimethyl sulfone (Me2SO2, from FeIVO2+ + Me2SO) and methanesulfonate (MeSO3-, from ·OH + Me2SO) over a wide range of FeII and O3 concentrations and pH. In addition, the role of environmentally relevant organic ligands on the reaction kinetics was also explored. The experimental results show that Fenton chemistry proceeds at a rate ∼104 times faster on microdroplets than that in bulk-phase water. Since the production of MeSO3- is initiated by ·OH radicals at diffusion-controlled rates, experimental ratios of Me2SO2/MeSO3- > 102 suggest that FeIVO2+ is the dominant intermediate under all conditions. Me2SO2 yields in the presence of ligands, L, vary as volcano-plot functions of E0(LFeIVO2++ O2/LFe2+ + O3) reduction potentials calculated by DFT with a maximum achieved in the case of L≡oxalate. Our findings underscore the key role of ferryl FeIVO2+ intermediates in Fenton chemistry taking place on aqueous microdroplets.
Collapse
Affiliation(s)
- Alan Y Gu
- Linde Laboratories, California Institute of Technology, Pasadena, California 91125, United States
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Charles Musgrave
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael R Hoffmann
- Linde Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| | - Agustín J Colussi
- Linde Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
19
|
Di Berto Mancini M, Del Gelsomino A, Di Stefano S, Frateloreto F, Lapi A, Lanzalunga O, Olivo G, Sajeva S. Change of Selectivity in C-H Functionalization Promoted by Nonheme Iron(IV)-oxo Complexes by the Effect of the N-hydroxyphthalimide HAT Mediator. ACS OMEGA 2021; 6:26428-26438. [PMID: 34661000 PMCID: PMC8515612 DOI: 10.1021/acsomega.1c03679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
A kinetic analysis of the hydrogen atom transfer (HAT) reactions from a series of organic compounds to the iron(IV)-oxo complex [(N4Py)FeIV(O)]2+ and to the phthalimide N-oxyl radical (PINO) has been carried out. The results indicate that a higher activating effect of α-heteroatoms toward the HAT from C-H bonds is observed with the more electrophilic PINO radical. When the N-hydroxy precursor of PINO, N-hydroxyphthalimide (NHPI), is used as a HAT mediator in the oxidation promoted by [(N4Py)FeIV(O)]2+, significant differences in terms of selectivity have been found. Product studies of the competitive oxidations of primary and secondary aliphatic alcohols (1-decanol, cyclopentanol, and cyclohexanol) with alkylaromatics (ethylbenzene and diphenylmethane) demonstrated that it is possible to modify the selectivity of the oxidations promoted by [(N4Py)FeIV(O)]2+ in the presence of NHPI. In fact, alkylaromatic substrates are more reactive in the absence of the mediator while alcohols are preferably oxidized in the presence of NHPI.
Collapse
Affiliation(s)
- Marika Di Berto Mancini
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Andrea Del Gelsomino
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Stefano Di Stefano
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Federico Frateloreto
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Andrea Lapi
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Osvaldo Lanzalunga
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
- CIRCC
Interuniversity Consortium Chemical Reactivity and Catalysis, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Giorgio Olivo
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| | - Stefano Sajeva
- Dipartimento
di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione
Meccanismi di Reazione, c/o Dipartimento di Chimica, Università di Roma “La Sapienza”, P.le A. Moro, 5, I-00185 Rome, Italy
| |
Collapse
|
20
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
21
|
Negative catalysis / non-Bell-Evans-Polanyi reactivity by metalloenzymes: Examples from mononuclear heme and non-heme iron oxygenases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Roach S, Faponle AS, Satpathy JK, Sastri CV, de Visser SP. Substrate sulfoxidation by a biomimetic cytochrome P450 Compound I mimic: How do porphyrin and phthalocyanine equatorial ligands compare? J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01917-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Ali HS, Henchman RH, de Visser SP. What Determines the Selectivity of Arginine Dihydroxylation by the Nonheme Iron Enzyme OrfP? Chemistry 2020; 27:1795-1809. [PMID: 32965733 DOI: 10.1002/chem.202004019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Indexed: 12/13/2022]
Abstract
The nonheme iron enzyme OrfP reacts with l-Arg selectively to form the 3R,4R-dihydroxyarginine product, which in mammals can inhibit the nitric oxide synthase enzymes involved in blood pressure control. To understand the mechanisms of dioxygen activation of l-Arg by OrfP and how it enables two sequential oxidation cycles on the same substrate, we performed a density functional theory study on a large active site cluster model. We show that substrate binding and positioning in the active site guides a highly selective reaction through C3 -H hydrogen atom abstraction. This happens despite the fact that the C3 -H and C4 -H bond strengths of l-Arg are very similar. Electronic differences in the two hydrogen atom abstraction pathways drive the reaction with an initial C3 -H activation to a low-energy 5 σ-pathway, while substrate positioning destabilizes the C4 -H abstraction and sends it over the higher-lying 5 π-pathway. We show that substrate and monohydroxylated products are strongly bound in the substrate binding pocket and hence product release is difficult and consequently its lifetime will be long enough to trigger a second oxygenation cycle.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
24
|
Kumar R, Pandey B, Sen A, Ansari M, Sharma S, Rajaraman G. Role of oxidation state, ferryl-oxygen, and ligand architecture on the reactivity of popular high-valent FeIV=O species: A theoretical perspective. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Sen A, Vyas N, Pandey B, Rajaraman G. Deciphering the mechanism of oxygen atom transfer by non-heme Mn IV-oxo species: an ab initio and DFT exploration. Dalton Trans 2020; 49:10380-10393. [PMID: 32613212 DOI: 10.1039/d0dt01785j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxygen atom transfer (OAT) reactions employing transition metal-oxo species have tremendous significance in homogeneous catalysis for industrial use. Understanding the structural and mechanistic aspects of OAT reactions using high-valent metal-oxo species is of great importance to fine-tune their reactivity. Herein we examine the reactivity of a non-heme high-valent oxo-manganese(iv) complex, [MnIVH3buea(O)]- towards a variety of substrates such as PPh2Me, PPhMe2, PCy3, PPh3, and PMe3 using density functional theory as well as ab initio CASSCF/NEVPT2 methods. We have initially explored the structure and bonding of [MnIVH3buea(O)]- and its congener [MnIVH3buea(S)]-. Our calculations affirm an S = 3/2 ground state of the catalyst with the S = 5/2 and S = 1/2 excited states predicted to be too high lying in energy to participate in the reaction mechanism. Our ab initio CASSCF/NEVPT2 calculations, however, reveal a strong multi-reference character for the ground S = 3/2 state with many low-lying quartets mixing significantly with the ground state. This opens up various reaction channels, and the admixed wave-function evolves during the reaction with the excited triplet dominating the ground state wave-function at the reactant complex. Our calculations predict the following pattern of reactivity, PCy3 < PMe3 < PPh3 < PPhMe2 < PPh2Me for the OAT reaction with the MnIV[double bond, length as m-dash]O species which correlates well with the experimental observations. Detailed electronic structure analysis of the transitions states reveal that these substrates react via an unusual low-energy δ-type pathway where a spin-up electron from the substrate is transferred to the δ*x2-y2 orbital of the MnIV[double bond, length as m-dash]O facilitated by its multi-reference character. The unusual reactivity observed here has implications in understanding the reactivity of [Mn4Ca] species in photosystem II.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | | | | | | |
Collapse
|
26
|
Coin G, Patra R, Rana S, Biswas JP, Dubourdeaux P, Clémancey M, de Visser SP, Maiti D, Maldivi P, Latour JM. Fe-Catalyzed Aziridination Is Governed by the Electron Affinity of the Active Imido-Iron Species. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01427] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guillaume Coin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, LCBM, 38000 Grenoble, France
- Univ. Grenoble Alpes, CEA, CNRS, DCM, 38000 Grenoble, France
| | - Ranjan Patra
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, LCBM, 38000 Grenoble, France
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, SYMMES, 38000 Grenoble, France
- Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Sector-125, Noida, India
| | - Sujoy Rana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal 734013, India
| | | | | | - Martin Clémancey
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, LCBM, 38000 Grenoble, France
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, SYMMES, 38000 Grenoble, France
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, LCBM, 38000 Grenoble, France
| |
Collapse
|
27
|
Yeh CG, Hörner G, Visser SP. Computational Study on O–O Bond Formation on a Mononuclear Non‐Heme Iron Center. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chieh‐Chih George Yeh
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street M1 7DN Manchester UK
| | - Gerald Hörner
- Institut für Anorganische Chemie IV / NW I Universität Bayreuth Universitätsstraße 30 95440 Bayreuth Germany
| | - Sam P. Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street M1 7DN Manchester UK
| |
Collapse
|
28
|
Catalytic and stoichiometric oxoiron(IV) assisted oxidation of hydrocynnamaldehyde under air. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Monika, Ansari A. Mechanistic insights into the allylic oxidation of aliphatic compounds by tetraamido iron( v) species: A C–H vs. O–H bond activation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03095c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work is based on a deep insight into a comparative study of C–H vs. O–H bond activation of allylic compound by the high valent iron complex. Our theoretical findings can help to design catalysts with better efficiency for catalytic reactions.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| |
Collapse
|
30
|
Mukherjee G, Reinhard FGC, Bagha UK, Sastri CV, de Visser SP. Sluggish reactivity by a nonheme iron(iv)-tosylimido complex as compared to its oxo analogue. Dalton Trans 2020; 49:5921-5931. [DOI: 10.1039/d0dt00018c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comparative spectroscopic and computational study of reactivity between ferryl-tosylimido and ferryl-oxo complexes of two biomimetic model systems. The Fe(iv)-tosylimido complex was found to be sluggish in comparison to its fellow oxo counterpart.
Collapse
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Fabián G. Cantú Reinhard
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | | | | | - Sam P. de Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| |
Collapse
|
31
|
Comparison of the stability and reactivity of achiral versus chiral nonheme oxoiron(IV) complexes supported by pentadentate N5 ligands in oxygen-atom and hydrogen-atom transfer reactions. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Davethu PA, de Visser SP. CO2 Reduction on an Iron-Porphyrin Center: A Computational Study. J Phys Chem A 2019; 123:6527-6535. [DOI: 10.1021/acs.jpca.9b05102] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Paul A. Davethu
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, the University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam P. de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, the University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
33
|
Rasheed W, Fan R, Abelson CS, Peterson PO, Ching WM, Guo Y, Que L. Structural implications of the paramagnetically shifted NMR signals from pyridine H atoms on synthetic nonheme Fe IV=O complexes. J Biol Inorg Chem 2019; 24:533-545. [PMID: 31172289 DOI: 10.1007/s00775-019-01672-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Oxoiron(IV) motifs are found in important intermediates in many enzymatic cycles that involve oxidations. Over half of the reported synthetic nonheme oxoiron(IV) analogs incorporate heterocyclic donors, with a majority of them comprising pyridines. Herein, we report 1H-NMR studies of oxoiron(IV) complexes containing pyridines that are arranged in different configurations relative to the Fe = O unit and give rise to paramagnetically shifted resonances that differ by as much as 50 ppm. The strong dependence of 1H-NMR shifts on the different configurations and orientation of pyridines relative to the oxoiron(IV) unit demonstrates how unpaired electronic spin density of the iron center affects the chemical shifts of these protons.
Collapse
Affiliation(s)
- Waqas Rasheed
- Department of Chemistry and Center of Metals in Biocatalysis, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Chase S Abelson
- Department of Chemistry and Center of Metals in Biocatalysis, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Paul O Peterson
- Department of Chemistry and Center of Metals in Biocatalysis, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Wei-Min Ching
- Department of Chemistry and Center of Metals in Biocatalysis, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Lawrence Que
- Department of Chemistry and Center of Metals in Biocatalysis, University of Minnesota-Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
34
|
Mukherjee G, Alili A, Barman P, Kumar D, Sastri CV, de Visser SP. Interplay Between Steric and Electronic Effects: A Joint Spectroscopy and Computational Study of Nonheme Iron(IV)-Oxo Complexes. Chemistry 2019; 25:5086-5098. [PMID: 30720909 DOI: 10.1002/chem.201806430] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Indexed: 01/05/2023]
Abstract
Iron is an essential element in nonheme enzymes that plays a crucial role in many vital oxidative transformations and metabolic reactions in the human body. Many of those reactions are regio- and stereospecific and it is believed that the selectivity is guided by second-coordination sphere effects in the protein. Here, results are shown of a few engineered biomimetic ligand frameworks based on the N4Py (N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) scaffold and the second-coordination sphere effects are studied. For the first time, selective substitutions in the ligand framework have been shown to tune the catalytic properties of the iron(IV)-oxo complexes by regulating the steric and electronic factors. In particular, a better positioning of the oxidant and substrate in the rate-determining transition state lowers the reaction barriers. Therefore, an optimum balance between steric and electronic factors mediates the ideal positioning of oxidant and substrate in the rate-determining transition state that affects the reactivity of high-valent reaction intermediates.
Collapse
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aligulu Alili
- The Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Prasenjit Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Devesh Kumar
- Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow, 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
35
|
Kirkland JK, Khan SN, Casale B, Miliordos E, Vogiatzis KD. Ligand field effects on the ground and excited states of reactive FeO2+ species. Phys Chem Chem Phys 2018; 20:28786-28795. [DOI: 10.1039/c8cp05372c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Multiconfigurational quantum chemical calculations on bare and representative ligated iron oxide dicationic species suggest that weak ligand fields promote more reactive channels, whereas strong ligand fields stabilize the less reactive iron-oxo structure.
Collapse
Affiliation(s)
| | - Shahriar N. Khan
- Department of Chemistry and Biochemistry
- Auburn University
- Auburn
- USA
| | - Bryan Casale
- Department of Chemistry
- University of Tennessee
- Knoxville
- USA
| | | | | |
Collapse
|