1
|
Hao L, Ling YY, Wang J, Shen QH, Li ZY, Tan CP. Theranostic Rhenium(I)-Based ER-Phagy Retardant Promotes Immunogenic Cell Death. J Med Chem 2025; 68:338-347. [PMID: 39720929 DOI: 10.1021/acs.jmedchem.4c01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
ER-phagy is a double-edged sword in the occurrence, development, and treatment of cancer; especially, its functions in immunotherapy are still unknown. In this work, we designed a theranostic Re complex (Re1) containing a BODIPY-derived ligand and a β-carboline ligand to target the endoplasmic reticulum (ER) and block ER-phagy at the late stages. Interestingly, as validated both in vitro and in vivo, ER-phagy blockage greatly enhances the capability of Re1 to induce immunogenic cell death (ICD). In summary, we dexterously fused two molecular modules for ER targeting and ER-phagy blockage into a coordination complex to afford a highly effective ICD inducer, which provides clues for designing new cancer immunotherapeutics.
Collapse
Affiliation(s)
- Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. China
| | - Yu-Yi Ling
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jie Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Qing-Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhi-Yuan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Guangzhou 510006, P. R. China
| |
Collapse
|
2
|
Kar B, Shanavas S, Karmakar A, Nagendra AH, Vardhan S, Sahoo SK, Bose B, Kundu S, Paira P. 2-Aryl-1 H-imidazo[4,5- f][1,10]phenanthroline-Based Binuclear Ru(II)/Ir(III)/Re(I) Complexes as Mitochondria Targeting Cancer Stem Cell Therapeutic Agents. J Med Chem 2024; 67:10928-10945. [PMID: 38812379 DOI: 10.1021/acs.jmedchem.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A series of novel Ru(II)/Ir(III)/Re(I)-based organometallic complexes [Ru2L1, Ru2L2, Ir2L1, Ir2L2, Re2L1, and Re2L2] have been synthesized to assess their potency and selectivity against multiple cancer cells A549, HCT-116, and HCT-116 colon CSCs. The cytotoxic screening of the synthesized complexes has revealed that complex Ru2L1 and Ir2L2 are two proficient complexes among all, but Ru2L1 is the most potent complex. A significant binding constant value was observed for DNA and BSA in all complexes. Significant lipophilic properties allow them to penetrate cancer cell membranes, and substantial quantum yield (ϕf) values support bioimaging potential. Again, these complexes are particular for mitochondrial localization and produce a profuse amount of ROS to damage the mitochondrial DNA and then G1 phase cell-cycle arrest. Protein expression analysis unveiled that pro-apoptotic Bax protein overexpressed in Ru2L1-treated cells, whereas antiapoptotic Bcl-2 protein was expressed twofold in Ir2L2-treated cells, which correlated with autophagy reticence.
Collapse
Affiliation(s)
- Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Shanooja Shanavas
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore, 575018 Karnataka, India
| | - Arun Karmakar
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Apoorva H Nagendra
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore, 575018 Karnataka, India
| | - Seshu Vardhan
- Department of Applied Chemistry, S. V. National Institute of Technology (SVNIT), Ichchanath Surat, Gujarat 395007, India
| | - Suban K Sahoo
- Department of Applied Chemistry, S. V. National Institute of Technology (SVNIT), Ichchanath Surat, Gujarat 395007, India
| | - Bipasha Bose
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore, 575018 Karnataka, India
| | - Subrata Kundu
- Materials Chemistry Laboratory for Energy, Environment and Catalysis, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
3
|
Navarrete E, Morales P, Muñoz-Osses M, Vásquez-Martínez Y, Godoy F, Maldonado T, Martí AA, Flores E, Mascayano C. Evaluating the inhibitory activity of ferrocenyl Schiff bases derivatives on 5-lipoxygenase: Computational and biological studies. J Inorg Biochem 2023; 245:112233. [PMID: 37141763 DOI: 10.1016/j.jinorgbio.2023.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
In the search for new 5-LOX inhibitors, two ferrocenyl Schiff base complexes functionalized with catechol ((ƞ5-(E)-C5H4-NCH-3,4-benzodiol)Fe(ƞ5-C5H5) (3a)) and vanillin ((ƞ5-(E)-C5H4-NCH-3-methoxy-4-phenol)Fe(ƞ5-C5H5) (3b)) were obtained. Complexes 3a and 3b were biologically evaluated as 5-LOX inhibitors showed potent inhibition compared to their organic analogs (2a and 2b) and known commercial inhibitors, with IC50 = 0.17 ± 0.05 μM for (3a) and 0.73 ± 0.06 μM for (3b) demonstrated a highly inhibitory and potent effect against 5-LOX due to the incorporation of the ferrocenyl fragment. Molecular dynamic studies showed a preferential orientation of the ferrocenyl fragment toward the non-heme iron of 5-LOX, which, together with electrochemical and in-vitro studies, allowed us to propose a competitive redox deactivation mechanism mediated by water, where Fe(III)-enzyme can be reduced by the ferrocenyl fragment. An Epa/IC50 relationship was observed, and the stability of the Schiff bases was evaluated by SWV in the biological medium, observing that the hydrolysis does not affect the high potency of the complexes, making them interesting alternatives for pharmacological applications.
Collapse
Affiliation(s)
| | - Pilar Morales
- Departamento Ciencias del Ambiente, Universidad de Santiago de Chile, Chile
| | | | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas y Aplicadas (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Chile
| | - Fernando Godoy
- Departamento Química de los Materiales, Universidad de Santiago de Chile, Chile
| | - Tamara Maldonado
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Angel A Martí
- Department of Chemistry, Bioengineering and Materials Science & Nanoengineering, Rice University, Houston, TX 77005, United States
| | - Erick Flores
- Departamento Química de los Materiales, Universidad de Santiago de Chile, Chile.
| | - Carolina Mascayano
- Departamento Ciencias del Ambiente, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
4
|
Mansour AM, Ibrahim NM, Farag AM, Abo-Elfadl MT. Evaluation of cytotoxic properties of two fluorescent fac-Re(CO) 3 complexes bearing an N, N-bidentate benzimidazole coligand. RSC Adv 2022; 12:30829-30837. [PMID: 36349156 PMCID: PMC9608107 DOI: 10.1039/d2ra05992d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
The reaction between 1H-benzimidazol-2-ylmethyl-(N-aryl)amine derivatives (LR) and [ReBr(CO)5] afforded octahedral Re(i) complexes of the general formula of [ReBr(CO)3LR] (R = 4-Cl and 4-COOCH3). The Re(i) complexes were screened for their potential cytotoxicity against three malignant cell lines and one normal cell line of different origins. The solvatochromic characteristics of the complexes were examined by UV/vis. spectroscopy with the aid of time-dependent density functional theory calculations. Strong autofluorescence emission can be seen in the two Re(i) complexes between 460 and 488 nm. They appeared to accumulate inside intercellular connections and surrounding cellular membranes. The substances gathered also, along the cell membrane, waiting for their entry. The mode of cell death staining and the DNA fragmentation analysis revealed that the 4-Cl complex showed increased apoptotic changes in the MCF-7, and the Caco-2 cell line, while the HepG2 cell line showed little apoptotic changes.
Collapse
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry, Faculty of Science, Cairo UniversityGamma StreetGizaCairo 12613Egypt
| | - Nourhan M. Ibrahim
- Department of Chemistry, Faculty of Science, Cairo UniversityGamma StreetGizaCairo 12613Egypt
| | - Ahmad M. Farag
- Department of Chemistry, Faculty of Science, Cairo UniversityGamma StreetGizaCairo 12613Egypt
| | - Mahmoud T. Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research CentreDokkiCairo 12622Egypt,Biochemistry Department, Biotechnology Research Institute, National Research CentreDokkiCairo 12622Egypt
| |
Collapse
|
5
|
Pete S, Roy N, Kar B, Paira P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Schindler K, Zobi F. Anticancer and Antibiotic Rhenium Tri- and Dicarbonyl Complexes: Current Research and Future Perspectives. Molecules 2022; 27:539. [PMID: 35056856 PMCID: PMC8777860 DOI: 10.3390/molecules27020539] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Organometallic compounds are increasingly recognized as promising anticancer and antibiotic drug candidates. Among the transition metal ions investigated for these purposes, rhenium occupies a special role. Its tri- and dicarbonyl complexes, in particular, attract continuous attention due to their relative ease of preparation, stability and unique photophysical and luminescent properties that allow the combination of diagnostic and therapeutic purposes, thereby permitting, e.g., molecules to be tracked within cells. In this review, we discuss the anticancer and antibiotic properties of rhenium tri- and dicarbonyl complexes described in the last seven years, mainly in terms of their structural variations and in vitro efficacy. Given the abundant literature available, the focus is initially directed on tricarbonyl complexes of rhenium. Dicarbonyl species of the metal ion, which are slowly gaining momentum, are discussed in the second part in terms of future perspective for the possible developments in the field.
Collapse
Affiliation(s)
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| |
Collapse
|
7
|
Sharma S. A, N. V, Kar B, Das U, Paira P. Target-specific mononuclear and binuclear rhenium( i) tricarbonyl complexes as upcoming anticancer drugs. RSC Adv 2022; 12:20264-20295. [PMID: 35919594 PMCID: PMC9281374 DOI: 10.1039/d2ra03434d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Metal complexes have gradually been attracting interest from researchers worldwide as potential cancer therapeutics. Driven by the many side effects of the popular platinum-based anticancer drug cisplatin, the tireless endeavours of researchers have afforded strategies for the design of appropriate metal complexes with minimal side effects compared to cisplatin and its congeners to limit the unrestricted propagation of cancer. In this regard, transition metal complexes, especially rhenium-based complexes are being identified and highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body. This is attributed the amazing photophysical properties of rhenium complexes together with their ability to selectively attack different organelles in cancer cells. Therefore, this review presents the properties of different rhenium-based complexes to highlight their recent advances as anticancer agents based on their cytotoxicity results. In this review, rhenium-based complexes are highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body.![]()
Collapse
Affiliation(s)
- Ajay Sharma S.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Vaibhavi N.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
8
|
Das U, Kar B, Pete S, Paira P. Ru(ii), Ir(iii), Re(i) and Rh(iii) based complexes as next generation anticancer metallopharmaceuticals. Dalton Trans 2021; 50:11259-11290. [PMID: 34342316 DOI: 10.1039/d1dt01326b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several anticancer drugs such as cisplatin, and its analogues, epirubicin, and doxorubicin are well known for their anticancer activity but the therapeutic value of these drugs comes with certain side effects and they cannot distinguish between normal and cancer cells. Thus, a major challenge for researchers around the world is to develop an anticancer drug with the least toxicity and more target specificity. With the successful reporting of NAMI-A and KP1019, a new path has emerged in the anticancer field. Recently, several Ru(ii) complexes have been reported for their anticancer activity due to their enhanced cellular uptake and selectivity towards cancer cells. Apart from the Ru(ii) complexes, a large amount of research has been carried out with Ir(iii), Re(i), and Rh(iii) based complexes, which exhibited promising anticancer activity. The present review reports various Ru(ii), Ir(iii), Re(i), and Rh(iii) based complexes for their anticancer activity based on their cytotoxicity profiles, biological targets and mechanism of action.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | | | | | | |
Collapse
|
9
|
Muñoz-Osses M, Quiroz J, Vásquez-Martínez Y, Flores E, Navarrete E, Godoy F, Torrent C, Cortez-San Martín M, Gómez A, Mascayano C. Evaluation of cyrhetrenyl and ferrocenyl precursors as 5-lipoxygenase inhibitors – biological and computational studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01336j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and biological evaluation of precursors derived from ferrocene and cyrhetrene as inhibitors of enzyme 5-hLOX.
Collapse
Affiliation(s)
| | - Javiera Quiroz
- Departamento Ciencias del Ambiente
- Universidad de Santiago de Chile
- Chile
| | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas y Aplicadas (CIBAP)
- Escuela de Medicina
- Facultad de Ciencias Médicas
- Universidad de Santiago de Chile
- Chile
| | - Erick Flores
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | | | - Fernando Godoy
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | - Claudia Torrent
- Departamento Ciencias del Ambiente
- Universidad de Santiago de Chile
- Chile
| | | | - Alejandra Gómez
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | | |
Collapse
|
10
|
Schutte-Smith M, Marker SC, Wilson JJ, Visser HG. Aquation and Anation Kinetics of Rhenium(I) Dicarbonyl Complexes: Relation to Cell Toxicity and Bioavailability. Inorg Chem 2020; 59:15888-15897. [PMID: 33084304 DOI: 10.1021/acs.inorgchem.0c02389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aquation reactions of four rhenium(I) dicarbonyl complexes, [Re(CO)2(NN)(PR3)(Cl)], where NN = 1,10-phenanthroline (Phen) and 2,9-dimethyl-1,10-phenanthroline (DMPhen) and PR3 = 1,3,5-triaza-7-phosphaadamantane (PTA) and 1,4-diacetyl-1,3,7-triaza-5-phosphabicylco[3.3.1]nonane (DAPTA). Additionally, the anation reactions of the corresponding aqua complexes with Cl- were investigated. Single crystals of [Re(CO)2(DMPhen)(PTA)(Cl)]·DMF and [Re(CO)2(DMPhen)(DAPTA)(Cl)] were obtained, and their structures were determined using X-ray diffraction. The Re-Cl interatomic distances are 2.4991(13) and 2.4922(6) Å, respectively, indicating a mild trans influence effect of the phosphine ligands. The rate constants, kaq, for the aquation reactions of these complexes spanned a range of (3.7 ± 0.3) × 10-4 to (15.7 ± 0.3) × 10-4 s-1 with the two Phen complexes having rate constants that are 2.5 times greater than those of the DMPhen complexes at 298 K. Similarly, the second-order anation rate constants (kCl) of the resulting aqua complexes, [Re(CO)2(NN)(PR3)(H2O)]+, with Cl- ions at 298 K varied between (2.99 ± 0.05) × 10-3 and (6.79 ± 0.09) × 10-3 M-1 s-1. Likewise, these rate constants for the Phen complexes were almost 2 times faster than those of the DMPhen complexes. The pKa values of the four aqua complexes were determined to be greater than 9.0 for all of the complexes with [Re(CO)2(Phen)(PTA)(H2O)]+ having the highest pKa value of 9.28 ± 0.03. From the pKa values and the ratios of the aquation and anation rate contants, which give thermodynamic Cl- binding constants, the speciation of the rhenium(I) complexes in blood plasma, the cytoplasm, and the cell nucleus were estimated. The data suggest that the aqua complexes would be the dominant species in all three environments. This result may have important implications on the potential biological activity of these complexes.
Collapse
Affiliation(s)
| | - Sierra C Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hendrik G Visser
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa 9301
| |
Collapse
|
11
|
Delasoie J, Pavic A, Voutier N, Vojnovic S, Crochet A, Nikodinovic-Runic J, Zobi F. Identification of novel potent and non-toxic anticancer, anti-angiogenic and antimetastatic rhenium complexes against colorectal carcinoma. Eur J Med Chem 2020; 204:112583. [PMID: 32731186 DOI: 10.1016/j.ejmech.2020.112583] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 12/26/2022]
Abstract
Combination therapy targeting both tumor growth and vascularization is considered to be a cornerstone for colorectal carcinomas (CRC) treatment. However, the major obstacles of most clinical anticancer drugs are their weak selective activity towards cancer cells and inherent inner organs toxicity, accompanied with fast drug resistance development. In our effort to discover novel selective and non-toxic agents effective against CRC, we designed, synthesized and characterized a series of rhenium(I) tricarbonyl-based complexes with increased lipophilicity. Two of these novel compounds were discovered to possess remarkable anticancer, anti-angiogenic and antimetastatic activity in vivo (zebrafish-human HCT-116 xenograft model), being effective at very low doses (1-3 μM). At doses as high as 250 μM the complexes did not provoke toxicity issues encountered in clinical anticancer drugs (cardio-, hepato-, and myelotoxicity). In vivo assays showed that the two compounds exceed the anti-tumor and anti-angiogenic activity of clinical drugs cisplatin and sunitinib malate, and display a large therapeutic window.
Collapse
Affiliation(s)
- Joachim Delasoie
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia.
| | - Noémie Voutier
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia
| | - Aurelien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 152, Belgrade, Republic of Serbia.
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700, Fribourg, Switzerland.
| |
Collapse
|
12
|
Gantsho VL, Dotou M, Jakubaszek M, Goud B, Gasser G, Visser HG, Schutte-Smith M. Synthesis, characterization, kinetic investigation and biological evaluation of Re(i) di- and tricarbonyl complexes with tertiary phosphine ligands. Dalton Trans 2020; 49:35-46. [DOI: 10.1039/c9dt04025k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kinetics of Re(i) complexes illustrated the ability to ‘tune’ the metal centre; phosphine-based complexes were more stable and more cytotoxic.
Collapse
Affiliation(s)
| | - Mazzarine Dotou
- Chimie ParisTech
- PSL University
- CNRS
- Institute of Chemistry for Life and Health Sciences
- Laboratory for Inorganic Chemical Biology
| | - Marta Jakubaszek
- Chimie ParisTech
- PSL University
- CNRS
- Institute of Chemistry for Life and Health Sciences
- Laboratory for Inorganic Chemical Biology
| | - Bruno Goud
- Institut Curie
- PSL University
- CNRS UMR 144
- Paris
- France
| | - Gilles Gasser
- Chimie ParisTech
- PSL University
- CNRS
- Institute of Chemistry for Life and Health Sciences
- Laboratory for Inorganic Chemical Biology
| | | | | |
Collapse
|
13
|
Collery P, Desmaele D, Vijaykumar V. Design of Rhenium Compounds in Targeted Anticancer Therapeutics. Curr Pharm Des 2019; 25:3306-3322. [DOI: 10.2174/1381612825666190902161400] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022]
Abstract
Background:
Many rhenium (Re) complexes with potential anticancer properties have been synthesized
in the recent years with the aim to overcome the clinical limitations of platinum agents. Re(I) tricarbonyl
complexes are the most common but Re compounds with higher oxidation states have also been investigated, as
well as hetero-metallic complexes and Re-loaded self-assembling devices. Many of these compounds display
promising cytotoxic and phototoxic properties against malignant cells but all Re compounds are still at the stage
of preclinical studies.
Methods:
The present review focused on the rhenium based cancer drugs that were in preclinical and clinical
trials were examined critically. The detailed targeted interactions and experimental evidences of Re compounds
reported by the patentable and non-patentable research findings used to write this review.
Results:
In the present review, we described the most recent and promising rhenium compounds focusing on their
potential mechanism of action including, phototoxicity, DNA binding, mitochondrial effects, oxidative stress
regulation or enzyme inhibition. Many ligands have been described that modulating the lipophilicity, the luminescent
properties, the cellular uptake, the biodistribution, and the cytotoxicity, the pharmacological and toxicological
profile.
Conclusion:
Re-based anticancer drugs can also be used in targeted therapies by coupling to a variety of biologically
relevant targeting molecules. On the other hand, combination with conventional cytotoxic molecules, such
as doxorubicin, allowed to take into profit the targeting properties of Re for example toward mitochondria.
Through the example of the diseleno-Re complex, we showed that the main target could be the oxidative status,
with a down-stream regulation of signaling pathways, and further on selective cell death of cancer cells versus
normal cells.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France
| | - Didier Desmaele
- Institut Galien, Universite Paris-Saclay, 92296 Chatenay-Malabry, France
| | - Veena Vijaykumar
- Biotechnology Department, REVA University, Bangalore, 560064, India
| |
Collapse
|