1
|
Nandy R, Jagličić Z, Jana NC, Brandão P, Bustamante F, Aravena D, Panja A. The effect of co-ligands on the performance of single-molecule magnet behaviours in a family of linear trinuclear Zn-Dy-Zn complexes with a compartmental Schiff base. Dalton Trans 2024; 53:13968-13981. [PMID: 39101745 DOI: 10.1039/d4dt01582g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
We present herein magneto-structural studies of three heterometallic Zn2Dy complexes: [Zn2Dy(L)2Cl2(H2O)](ClO4)·4H2O (1), [Zn2Dy(L)2Br2(H2O)](ClO4)·4H2O (2) and [Zn2Dy(L)2(OAc)I(H2O)]I3·4H2O (3), utilizing a new Schiff base ligand, N,N'-bis(3-methoxy-5-methylsalicylidene)-1,2-diaminocyclohexane (H2L). Complexes 1 and 2 exhibit remarkable magnetic relaxation behaviour with relatively high energy barriers in zero field (Ueff: 244 K for 1 and 211 K for 2) and notable hysteresis temperatures, despite the low local geometric symmetry around the central DyIII ions. The SMM performance of these complexes is further enhanced under an applied magnetic field, with Ueff increasing to 309 K for 1 and 269 K for 2, positioning them as elite members within the Zn-Dy SMM family. These findings emphasize the substantial influence of remote modulation on ZnII beyond the first coordination sphere of DyIII ions on their dynamic magnetic relaxation properties. Ab initio studies demonstrate that the relative orientation of the phenoxo-oxygen donor atoms around the DyIII ion is critical for determining the magnetic anisotropy and relaxation dynamics in these systems. Additionally, experimental and theoretical investigations reveal that the coordination of the bridging acetate towards the hard plane, combined with significant distortion from the ideal ZnO2Dy diamond core arrangement caused by the acetate ion, results in low magnetic anisotropy in complex 3, thereby leading to field-induced SMM behaviour. Overall, this study unveils the effects of co-ligands on the SMM performance in a series of linear trinuclear Zn-Dy-Zn complexes, which exhibit low local geometric symmetry around the DyIII centres.
Collapse
Affiliation(s)
- Rakhi Nandy
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fabián Bustamante
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Daniel Aravena
- Department of Materials Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Anangamohan Panja
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
2
|
Song H, Jin C, Wang X, Xie J, Ma Y, Tang J, Li L. Tuning spin dynamics of binuclear Dy complexes using different nitroxide biradical derivatives. Dalton Trans 2024; 53:10007-10017. [PMID: 38814577 DOI: 10.1039/d3dt04360f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
By employing nitronyl/imino nitroxide biradicals, three Ln-Zn complexes, namely, [Ln2Zn2(hfac)10(ImPhPyobis)2] (LnIII = Gd 1, Dy 2; hfac = hexafluoroacetylacetonate; ImPhPyobis = 5-(4-oxypyridinium-1-yl)-1,3-bis(1'-oxyl-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene) and [Dy2Zn2(hfac)10(NITPhPyobis)2] 3 (NITPhPyobis = 5-(4-oxypyridinium-1-yl)-1,3-bis(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene), have been successfully prepared. The three complexes possess {Ln2O2} cores bridged by the oxygen atoms of the 4-oxypyridinium rings of the biradical ligands and one of the imino/nitronyl nitroxide groups of the biradical is coordinated to a ZnII ion, then producing a centrosymmetric tetranuclear six-spin structure. The studies of spin dynamics indicate that complexes 2 and 3 exhibit distinct magnetic relaxation behaviors at zero dc field: complex 2 presents single relaxation with an effective energy barrier (Ueff) of 69.8 K, while complex 3 exhibits double relaxation processes with Ueff values for the fast and slow relaxation being 15.8 K and 50.9 K, respectively. The observed different magnetic relaxation behaviors for the two Dy complexes could be mainly ascribed to the influence of the distinct nitroxide biradical derivatives.
Collapse
Affiliation(s)
- Hongwei Song
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Chaoyi Jin
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xiaotong Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Junfang Xie
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yue Ma
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Licun Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Shukla P, Tarannum I, Roy S, Rajput A, Lama P, Singh SK, Kłak J, Lee J, Das S. Effect of diamagnetic Zn(II) ions on the SMM properties of a series of trinuclear ZnDy 2 and tetranuclear Zn 2Dy 2 (Ln III = Dy, Tb, Gd) complexes: combined experimental and theoretical studies. Dalton Trans 2024; 53:7053-7066. [PMID: 38564260 DOI: 10.1039/d4dt00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To study the effect of diamagnetic ions on magnetic interactions, utilizing a compartmental ligand (Z)-2-(hydroxymethyl)-4-methyl-6-((quinolin-8-ylimino)methyl)phenol (LH2), two different series of ZnII-LnIII complexes, namely the trinuclear series of [DyZn2(L)2(μ2-OAc)2(CH3OH)2]·NO3·MeOH (1), [TbZn2(L)2(μ2-OAc)2(CH3OH)2]·NO3·5MeOH·H2O (2), and [GdZn2(L)2(μ2-OAc)2(CH3OH)2]·NO3·MeOH·CHCl3 (3) and the tetranuclear series of [Dy2Zn2(LH)4(NO3)4(μ2OAc)]·NO3·MeOH·H2O (4), [Tb2Zn2(LH)4(NO3)4(μ2-OAc)]·NO3·MeOH·2H2O (5), and [Gd2Zn2(LH)4(NO3)4(μ2-OAc)]·NO3·MeOH·2H2O (6), were synthesized. Trinuclear ZnII-LnIII complexes 1-3 consist of one LnIII ion sandwiched between two peripheral ZnII ions forming a bent type ZnII-DyIII-ZnII array with an angle of 110.64°. Tetranuclear ZnII-LnIII complexes 4-6 are basically a combination of two dinuclear moieties of [LnZn(LH)2(NO3)2]+ connected by one bidentate bridging acetate ion in μ2-OAc coordination mode. The detailed magnetic analysis reveals that complexes 1 and 4 are single molecule magnets having energy barriers of 34.98 K and 46.71 K with relaxation times (τ0) of 5.05 × 10-4 s and 5.24 × 10-4 s, respectively. Ab initio calculations were employed to analyze the magnetic anisotropy and magnetic exchange interaction between the ZnII and LnIII centers with the aim of gaining better insights into the magnetic dynamics of complexes 1-6.
Collapse
Affiliation(s)
- Pooja Shukla
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure Technology Research and Management, Near Khokhra Circle, Maninagar East, Ahmedabad-380026, Gujarat, India.
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ibtesham Tarannum
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Soumalya Roy
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Amit Rajput
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, Faridabad 121006, Haryana, India
| | - Prem Lama
- CSIR-Indian Institute of Petroleum, Nanocatalysis Area, LSP Division, Haridwar Road, Mokhampur, Dehradun 248005, India
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502285, Sangareddy, Telangana, India.
| | - Julia Kłak
- Faculty of Chemistry, University of Wroclaw, Wroclaw 50-383, Poland.
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure Technology Research and Management, Near Khokhra Circle, Maninagar East, Ahmedabad-380026, Gujarat, India.
| |
Collapse
|
4
|
Ma XF, Zeng D, Xu C, Bao SS, Zheng LM. Layered lanthanide phosphonates Ln(2-qpH)(SO 4)(H 2O) 2 (Ln = La, Ce, Pr, Nd, Sm): polymorphism and magnetic properties. Dalton Trans 2023; 52:11913-11921. [PMID: 37563974 DOI: 10.1039/d3dt01698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Polymorphic layered lanthanide coordination polymers provide opportunities to study the effect of intralayer and interlayer interactions on their magnetic dynamics. Herein we report a series of layered lanthanide phosphonates, namely, α-Ln(2-qpH)(SO4)(H2O)2 (Ln = Sm) (α-Ln), β-Ln(2-qpH)(SO4)(H2O)2 (Ln = Pr, Nd, Sm) (β-Ln) and γ-Ln(2-qpH)(SO4)(H2O)2 (Ln = La, Ce, Pr, Nd, Sm) (γ-Ln) (2-qpH2 = 2-quinolinephosphonic acid), which crystallize in monoclinic P21/c (α-Ln), triclinic P1̄ (β-Ln) and orthorhombic Pbca (γ-Ln) space groups, respectively. The structural differences between the β- and γ-phases lie not only in the intralayer but also in the interlayer. Within the layers, the Ln2O2 dimers are aligned parallel in the β-phase, but are non-parallel in the γ-phase. In the interlayer, there are π-π interactions between the quinoline groups in the α- and β-phases but not in the γ-phase. Magnetic studies reveal a field-induced slow relaxation of the magnetisation at low temperatures for compounds γ-Ce, β-Nd, and γ-Nd, and the impact of polymorphism on the magnetic dynamics of Nd(III) compounds is discussed.
Collapse
Affiliation(s)
- Xiu-Fang Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Dai Zeng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, P. R. China
| | - Chang Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
5
|
Xia CC, Ji WJ, Zhang XY, Miao H, Zhang YQ, Wang XY. Syntheses, structures, and magnetic properties of the lanthanide complexes of imidazole-substituted nitronyl nitroxide biradicals. Dalton Trans 2022; 51:12362-12372. [PMID: 35904351 DOI: 10.1039/d2dt01652d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new bis-bidentate imidazole-substituted nitronyl nitroxide biradicals, BNITIm-C2 (BNITIm-C2 = 1,1'-(1,2-ethanediyl)bis(1H-imidazole-2-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxy-3-oxide)) and BNITIm-C4 (BNITIm-C4 = 1,1'-(1,4-butanediyl)bis(1H-imidazole-2-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxy-3-oxide)), and two series of lanthanide complexes, namely [(BNITIm-C2)Ln(NO3)3](MeOH) (Ln = Gd (1Gd) and Tb (2Tb)), (BNITIm-C2)Dy(NO3)3 (3Dy) and (BNITIm-C4)[Ln(hfac)3]2(C7H8)2 (Ln = Gd (4Gd), Tb (5Tb) and Dy (6Dy), hfac = hexafluoroacetylacetonate), have been prepared and characterized structurally and magnetically. Single crystal X-ray crystallographic analyses revealed that complexes 1Gd-3Dy exhibit 1D chain structures where the Ln(NO3)3 units are bridged by the BNITIm-C2 bis-bidentate biradical, while complexes 4Gd-6Dy exhibit binuclear structures with two Ln(hfac)3 units bridged by the BNITIm-C4 biradical. The bulky hfac anions prohibit the further coordination of LnIII to another NIT ligand and the formation of a similar 1D chain structure. Due to the very long intra- and intermolecular distances of the spin centers, complexes 1Gd-3Dy can be magnetically regarded as an isolated 2p-4f-2p tri-spin system while complex 4Gd-6Dy can be regarded as an isolated 2p-4f bi-spin system. Magnetic analyses on the two GdIII compounds revealed the ferromagnetic GdIII-NIT interactions and antiferromagnetic NIT-NIT interactions through the GdIII ion in 1Gd. Alternating-current (ac) magnetic susceptibility investigations revealed that complex 5Tb exhibits the typical SMM behavior under a zero dc field while complex 6Dy was proved to be a field-induced SMM. Ab initio calculations were performed on complexes 2Tb and 5Tb to understand their magnetic anisotropy together with their different magnetic dynamics.
Collapse
Affiliation(s)
- Cheng-Cai Xia
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Wen-Jie Ji
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xin-Yu Zhang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hao Miao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China.
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Panja A, Jagličić Z, Herchel R, Brandão P, Pramanik K, Jana NC. Three angular Zn 2Dy complexes showing the effect of remote coordination at Zn and counter ions on slow magnetic relaxation at Dy centres. NEW J CHEM 2022. [DOI: 10.1039/d2nj01759h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three isostructural Zn2Dy complexes displaying the effect of remote coordination at Zn and counter ions on slow magnetic relaxation at Dy centres.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kuheli Pramanik
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
7
|
Panja A, Jagličić Z, Herchel R, Brandão P, Jana NC. Influence of bridging and chelating co-ligands on the distinct single-molecule magnetic behaviours in ZnDy complexes. NEW J CHEM 2022. [DOI: 10.1039/d2nj03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four ZnDy complexes display an effect of bridging/chelating co-ligands on distinct single-molecule magnetic behaviours, relaxing through single to multi relaxation channels.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
| |
Collapse
|
8
|
Yu S, Zhang Q, Zhu J, Wei F, Liu D, Hu H, Zou H, Liang Y, Liang F, Chen Z. Two tetranuclear Cu
2
Ln
2
(Ln = Dy, Tb) heterometallic complexes: Structure, solution behavior, and magnetic properties. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shui Yu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Qin‐Hua Zhang
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of Chemical Engineering China University of Petroleum (East China) Qingdao China
| | - Jingru Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Fengli Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Hua‐Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin China
| |
Collapse
|
9
|
Wang HS, Zhou PF, Wang J, Long QQ, Hu Z, Chen Y, Li J, Song Y, Zhang YQ. Significantly Enhancing the Single-Molecule-Magnet Performance of a Dinuclear Dy(III) Complex by Utilizing an Asymmetric Auxiliary Organic Ligand. Inorg Chem 2021; 60:18739-18752. [PMID: 34865470 DOI: 10.1021/acs.inorgchem.1c02169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this work, we employed an asymmetric auxiliary organic ligand (1,1,1-trifluoroacetylacetone, Htfac) to further regulate the magnetic relaxation behavior of series of Dy2 single-molecule magnets (SMMs) with a N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2L) ligand. Fortunately, an air-stable Dy2 complex, [Dy2(L)2(tfac)2] (1; Htfac = 1,1,1-trifluoroacetylacetone) was obtained at room temperature. A structural analysis indicated that some Dy-O or Dy-N bond lengths for 1 are not in the range of those for the complexes [DyIII2(L)2(acac)2]·2CH2Cl2 (Dy2-acac; Hacac = acetylacetone) and [DyIII2(L)2(hfac)2] (Dy2-hfac; Hhfac = hexafluoroacetylacetone), although the electron-withdrawing ability of tfac- is stronger than that of acac- but weaker than that of hfac-. Additionally, the Dy-O3/O3a (the two O atoms bridged to DyIII ions) bond lengths are also affected by the asymmetrical Htfc ligand. This indicated that the charge distribution of the coordination atoms around DyIII has been modified in 1, which leads to the fine-tuning of the magnetic relaxation behavior of 1. Magnetic studies indicated that the values of effective energy barrier (Ueff) for 1 and its diluted sample (2) are 234.8(3) and 188.0(6) K, respectively, which are both higher than the reported value of 110 K for the complex Dy2-hfac. More interestingly, 1 exhibits a magnetic hysteresis opening when T < 2.5 K at zero field, while the hysteresis loops of 2 are closed at a zero dc field. This discrepancy is due to the weak intramolecular exchange coupling in 2, which cannot overcome the QTM of the single DyIII ion. Ab initio calculations for 1 revealed that the charge distributions of the coordination atoms around DyIII ions were regulated and the intramolecular exchange coupling was indeed improved when the asymmetrical Htfc was employed as a ligand for the synthesis of this kind of Dy2 SMM.
Collapse
Affiliation(s)
- Hui-Sheng Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Peng-Fei Zhou
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Jia Wang
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qiao-Qiao Long
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Zhaobo Hu
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, People's Republic of China
| | - Jing Li
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - You Song
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
10
|
Hu JJ, Peng Y, Liu SJ, Wen HR. Recent advances in lanthanide coordination polymers and clusters with magnetocaloric effect or single-molecule magnet behavior. Dalton Trans 2021; 50:15473-15487. [PMID: 34668916 DOI: 10.1039/d1dt02797b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular magnetorefrigerant materials for low-temperature magnetic refrigeration and single-molecule magnets for high-density information storage and quantum computing have received extensive attention from chemists and magnetic experts. Lanthanide ions with unique magnetic properties have always been considered as ideal candidates for the construction of such materials. This frontier article focuses on GdIII-based molecular magnetorefrigerants and lanthanide-based single-molecule magnets and highlights the most significant advances.
Collapse
Affiliation(s)
- Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
11
|
Miao W, Yang N, Yang H, Dou J, Li D. Two Copper Coordination Polymers with Cage-Like 12-MC-4 Metallacrown and Linear Trinuclear Structures. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Wang HS, Zhang K, Wang J, Hu ZB, Zhang Z, Song Y, Zhang YQ. Influence of the Different Types of Auxiliary Noncarboxylate Organic Ligands on the Topologies and Magnetic Relaxation Behavior of Zn-Dy Heterometallic Single Molecule Magnets. Inorg Chem 2021; 60:9941-9955. [PMID: 34114807 DOI: 10.1021/acs.inorgchem.1c01217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we first synthesized a Zn-Dy complex, [Zn6Dy2(L)6(tea)2(CH3OH)2]·6CH3OH·8H2O (H2L = N-3-methoxysalicylidene-2-amino-3-hydroxypyridine, teaH3 = triethanolamine, 1), by employing H2L, anhydrous ZnCl2, and Dy(NO3)3·5H2O reacting with auxiliary ligand teaH3 in the mixture of CH3OH and DMF. When teaH3 and the solvent CH3OH in the reaction system of 1 were replaced by the auxiliary ligand 2,6-pyridinedimethanol (pdmH2) and the solvent MeCN, another Zn-Dy complex, [Zn4Dy4(L)6(pdm)2(pdmH)4]·10CH3CN·5H2O (2), was obtained. For 1, its crystal structure can be viewed as a dimer of two Zn3DyIII units. However, for 2, four DyIII form a zigzag arrangement, and each of its terminals linked two ZnII ions. Interestingly, although the structural topologies of 1 and 2 are different, the coordination geometries of DyIII in 1 and 2 are all triangular dodecahedron (TDD-8). The difference is that the continuous shape measure (CShM) values of DyIII in 1 are larger than the corresponding values in 2. Magnetic investigation revealed that the diluted sample 1@Y exhibits two magnetic relaxation processes, while 2 only exhibits a single relaxation process. Ab initio calculations indicated that, in the crystal lattice of 1, two complexes exhibiting slightly different CShM values of DyIII result in the double relaxation behavior of 1@Y. However, for 2, one of two DyIII fragments possesses a fast quantum tunneling of magnetization (QTM), resulting in its magnetic process presented at T < 1.8 K, so 2 exhibits single relaxation behavior. More importantly, the theoretical calculations also clearly indicated that the weak ligation at equatorial sites of DyIII in 1 and 2 ensure 1@Y and 2 possess SMM behavior, although the coordination geometry of DyIII (TDD-8) in 1 and 2 severely deviates from the ideal polyhedron and its axial symmetry is low.
Collapse
Affiliation(s)
- Hui-Sheng Wang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, P. R. China
| | - Ke Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, P. R. China
| | - Jia Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210046, P. R. China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210046, P. R. China
| | - Zaichao Zhang
- Jiangsu Key Laboratory for the Chemistry of Low-dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 210024, P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210046, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
13
|
Wang HS, Zhang K, Song Y, Pan ZQ. Recent advances in 3d-4f magnetic complexes with several types of non-carboxylate organic ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Wang JH, Li ZY, Yamashita M, Bu XH. Recent progress on cyano-bridged transition-metal-based single-molecule magnets and single-chain magnets. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213617] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Wang HS, Zhang K, Wang J, Hu Z, Song Y, Zhang Z, Pan ZQ. Regulating the distortion degree of the square antiprism coordination geometry in Dy–Na single ion magnets. CrystEngComm 2021. [DOI: 10.1039/d1ce00146a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DyNa complex (1) and a DyNa2 1D chain (2) have been obtained; their square antiprism coordination geometries were changed from the bicapped triangular prism of the reported DyNa2 complex. Compounds 1 and 2 exhibit single ion magnet behavior.
Collapse
Affiliation(s)
- Hui-Sheng Wang
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province
- Wuhan Institute of Technology
- Wuhan 430205
| | - Ke Zhang
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province
- Wuhan Institute of Technology
- Wuhan 430205
| | - Jia Wang
- State Key Laboratory of Coordinate Chemistry
- Nanjing National Laboratory of Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Zhaobo Hu
- State Key Laboratory of Coordinate Chemistry
- Nanjing National Laboratory of Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - You Song
- State Key Laboratory of Coordinate Chemistry
- Nanjing National Laboratory of Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Zaichao Zhang
- Jiangsu Key Laboratory for the Chemistry of Low-dimensional Materials
- School of Chemistry and Chemical Engineering
- Huaiyin Normal University
- P. R. China
| | - Zhi-Quan Pan
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province
- Wuhan Institute of Technology
- Wuhan 430205
| |
Collapse
|
16
|
Synthesis, crystal structures and magnetic properties of a 1D chain based on trinuclear Cu subunits and a Cu4Dy2 complex. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Liu C, Hao X, Zhang D. CO
2
‐fixation into carbonate anions for the construction of 3d‐4f cluster complexes with salen‐type Schiff base ligands: from molecular magnetic refrigerants to luminescent single‐molecule magnets. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cai‐Ming Liu
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Science Chinese Academy of Sciences Beijing 100190 China
| | - Xiang Hao
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Science Chinese Academy of Sciences Beijing 100190 China
| | - De‐Qing Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Science Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
18
|
Observation of field-induced single-ion magnet behavior in a mononuclear DyIII complex by co-crystallization of a square-planar CuII complex. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Bresciani G, Biancalana L, Pampaloni G, Marchetti F. Recent Advances in the Chemistry of Metal Carbamates. Molecules 2020; 25:E3603. [PMID: 32784784 PMCID: PMC7465543 DOI: 10.3390/molecules25163603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Following a related review dating back to 2003, the present review discusses in detail the various synthetic, structural and reactivity aspects of metal species containing one or more carbamato ligands, representing a large family of compounds across all the periodic table. A preliminary overview is provided on the reactivity of carbon dioxide with amines, and emphasis is given to recent findings concerning applications in various fields.
Collapse
Affiliation(s)
| | | | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.B.); (L.B.)
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.B.); (L.B.)
| |
Collapse
|
20
|
Biswas M, Sañudo EC, Ray D. Octanuclear Ni
4
Ln
4
Coordination Aggregates from Schiff Base Anion Supports and Connecting of Two Ni
2
Ln
2
Cubes: Syntheses, Structures, and Magnetic Properties. Chem Asian J 2020; 15:2731-2741. [DOI: 10.1002/asia.202000679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/08/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Mousumi Biswas
- Department of Chemistry Indian Institute of Technology Kharagpur 721 302 India
| | - E. Carolina Sañudo
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institut de Nanociència i Nanotecnologia Universitat de Barcelona (IN2UB) 08028 Barcelona Spain
| | - Debashis Ray
- Department of Chemistry Indian Institute of Technology Kharagpur 721 302 India
| |
Collapse
|
21
|
Li NF, Ji J, Jiang W, Cao JP, Han YM, Yuan P, Xu Y. Chirality and Magnetic Properties of One-dimensional Ln (Ln = Gd, Dy) Polymers. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ning-Fang Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented; Chemical Engineering; Nanjing Tech University; 211816 Nanjing P. R. China
| | - Jiuyang Ji
- Teaching Affaires Office; Nanjing Tech University; 211816 Nanjing P. R. China
| | - Wei Jiang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented; Chemical Engineering; Nanjing Tech University; 211816 Nanjing P. R. China
| | - Jia-Peng Cao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented; Chemical Engineering; Nanjing Tech University; 211816 Nanjing P. R. China
| | - Ye-Min Han
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented; Chemical Engineering; Nanjing Tech University; 211816 Nanjing P. R. China
| | - Peng Yuan
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented; Chemical Engineering; Nanjing Tech University; 211816 Nanjing P. R. China
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented; Chemical Engineering; Nanjing Tech University; 211816 Nanjing P. R. China
| |
Collapse
|
22
|
Song XJ, Xue XM. Study on the Magneto-Structural Correlation of a New Dinuclear Cobalt(II) Complex with Double μ-Phenoxo Bridges. ACS OMEGA 2020; 5:8347-8354. [PMID: 32309745 PMCID: PMC7161063 DOI: 10.1021/acsomega.0c00853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
A new μ-phenoxo-bridged dinuclear cobalt(II) complex, [Co2(L)2(acac)2(H2O)] (1), has been synthesized by employing a new ligand, (4-methyl-2-formyl-6-(((2-trifluoromethyl)phenyl)methyliminomethyl) phenol) (HL). Structural analysis of complex 1 reveals that the geometry around cobalt centers is best described as a distorted octahedron and the distance of cobalt neighbors is 3.128(0) Å. The magnetic property studies indicate that complex 1 exhibits strong spin-orbit coupling effects and weak ferromagnetic coupling between two high-spin Co(II) centers linked by double μ-Ophenoxo bridges, with J = 1.87(2) cm-1. The studies show that not only the Co-O-Co angle affects the alignment of the cobalt spins but also the dihedral angle between the CoOCo plane and the phenyl plane plays an important role in the magnetic coupling in this [Co2O2] system. Thus, the small bridging angles (96.96(11) and 96.91(11)°) and the large dihedral angles between the CoOCo plane and the phenyl plane (63.0(1) and 30.6(1)°) induce intramolecular ferromagnetic exchange interaction in complex 1.
Collapse
|
23
|
Lun HJ, Kong XJ, Long LS, Zheng LS. Trigonal bipyramidal CoDy 3 cluster exhibiting single-molecule magnet behavior. Dalton Trans 2020; 49:2421-2425. [PMID: 32040097 DOI: 10.1039/c9dt04600c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterometallic 3d-4f compound formulated as {[CoIII2Dy3Na(CH3CH2COO)6(OH)6(NO3)4(H2O)2]·H2O}n (1) has been synthesized and structurally characterized. The Co2Dy3 metal core adopts trigonal bipyramidal (TBP) geometry. Compound 1 displays single-molecule magnet behavior with an energy barrier of 60.3 K under a zero dc field.
Collapse
Affiliation(s)
- Hui-Jie Lun
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
24
|
Wen HR, Hu JJ, Yang K, Zhang JL, Liu SJ, Liao JS, Liu CM. Family of Chiral ZnII–LnIII (Ln = Dy and Tb) Heterometallic Complexes Derived from the Amine–Phenol Ligand Showing Multifunctional Properties. Inorg Chem 2020; 59:2811-2824. [DOI: 10.1021/acs.inorgchem.9b03164] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an 343000, People’s Republic of China
| | - Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - Jia-Li Zhang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - Jin-Sheng Liao
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, People’s Republic of China
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|
25
|
Effects of calcium ions on crystal structure and luminescence properties of six rare earth metal complexes. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2019.121053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Wang HS, Chen Y, Hu ZB, Zhang K, Zhang Z, Song Y, Pan ZQ. Modulating the structural topologies and magnetic relaxation behaviour of the Mn–Dy compounds by using different auxiliary organic ligands. NEW J CHEM 2020. [DOI: 10.1039/d0nj03838e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MnIII4DyIII complex and a one-dimensional chain containing MnIII2DyIII units have been obtained by using different combinations of organic ligands, and a slow magnetic relaxation behavior was observed for both complexes.
Collapse
Affiliation(s)
- Hui-Sheng Wang
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province
- Wuhan Institute of Technology
- Wuhan 430074
| | - Yong Chen
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province
- Wuhan Institute of Technology
- Wuhan 430074
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210046
| | - Ke Zhang
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province
- Wuhan Institute of Technology
- Wuhan 430074
| | - Zaichao Zhang
- Jiangsu Key Laboratory for the Chemistry of Low-dimensional Materials
- College of Chemistry and Chemical Engineering
- Huaiyin Normal University
- Huai’an 223300
- P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210046
| | - Zhi-Quan Pan
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province
- Wuhan Institute of Technology
- Wuhan 430074
| |
Collapse
|
27
|
Liu CM, Zhang DQ, Hao X, Zhu DB. Assembly of chiral 3d–4f wheel-like cluster complexes with achiral ligands: single-molecule magnetic behavior and magnetocaloric effect. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00632g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the help of perchlorate ions, chiral M3Ln3 wheel-like cluster complexes were constructed from achiral ligands, and showed single-molecule magnetic behavior and magnetocaloric effect.
Collapse
Affiliation(s)
- Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
| | - De-Qing Zhang
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Xiang Hao
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Dao-Ben Zhu
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
28
|
Liu CM, Zhang DQ, Hao X, Zhu DB. Zn2Ln2 complexes with carbonate bridges formed by the fixation of carbon dioxide in the atmosphere: single-molecule magnet behaviour and magnetocaloric effect. Dalton Trans 2020; 49:2121-2128. [DOI: 10.1039/c9dt04480a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the self-assembly process, CO2 in the air is automatically fixed to Zn2Ln2 cluster molecular materials.
Collapse
Affiliation(s)
- Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
| | - De-Qing Zhang
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Xiang Hao
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Dao-Ben Zhu
- Beijing National Laboratory for Molecular Sciences
- Center for Molecular Science
- Key Laboratory of Organic Solids
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
29
|
Wang HS, Long QQ, Hu ZB, Yue L, Yang FJ, Yin CL, Pan ZQ, Zhang YQ, Song Y. Synthesis, crystal structures and magnetic properties of a series of chair-like heterometallic [Fe 4Ln 2] (Ln = Gd III, Dy III, Ho III, and Er III) complexes with mixed organic ligands. Dalton Trans 2019; 48:13472-13482. [PMID: 31454007 DOI: 10.1039/c9dt02638j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Four chair-like hexanuclear Fe-Ln complexes containing mixed organic ligands, namely, [Fe4Ln2{(py)2CO2}4(pdm)2(NO3)2(H2O)2Cl4]·xCH3CN·yH2O (Ln = GdIII (1, x = 1, y = 0), DyIII (2, x = 1, y = 1), HoIII (3, x = 0, y = 2), and ErIII (4, x = 1, y = 3); (py)2CO2H2 = the gem-diol form of di-2-pyridyl ketone and pdmH2 = 2,6-pyridinedimethanol) have been obtained by employing di-2-pyridyl ketone and 2,6-pyridinedimethanol reacting with FeCl3 and Ln(NO3)3 in MeCN. The structures of 1-4 are similar to each other except for the number of lattice solvent molecules. Four FeIII and two LnIII in these complexes comprise a chair-like core with the "body" constructed by four FeIII ions and the "end" constructed by two LnIII ions. Among the four compounds, 2 shows field-induced single molecule magnet behavior as revealed by ac magnetic susceptibility studies, with the effective energy barrier and the pre-exponential factor of 22.07 K and 8.44 × 10-7 s, respectively. Ab initio calculations indicated that, among 2_Dy, 3_Ho and 4_Er fragments, the energy gap between the lowest two spin-orbit states for 2_Dy is the largest, while the tunneling gap for 2 is the smallest. These might be the reasons for complex 2 exhibiting SMM behavior. Additionally, the orientations of the magnetic anisotropy of DyIII in 2 were obtained by electrostatic calculations and ab initio calculations, both indicating that the directions of the main magnetic axis of Dy1 ions are almost aligned along Dy1-O5 (O5 from the pdm2- ligand).
Collapse
Affiliation(s)
- Hui-Sheng Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, P. R. China.
| | - Qiao-Qiao Long
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, P. R. China.
| | - Zhao-Bo Hu
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Lin Yue
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, P. R. China.
| | - Feng-Jun Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, P. R. China.
| | - Cheng-Ling Yin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, P. R. China.
| | - Zhi-Quan Pan
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan 430074, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China.
| | - You Song
- State Key Laboratory of Coordinate Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
30
|
A Dy-based complex with the magnetic relaxation behavior regulated by enclosing one DyIII ion into a Calix[8]arene ligand. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
First transition metal complex containing SMIA− carboxylate ligand: Synthesis, structure and magnetic properties of a new tetranuclear copper complex [Cu4(SMIA)6(phen)4](ClO4)2. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Wang HS, Chen Y, Hu ZB, Yin CL, Zhang Z, Pan ZQ. Modulation of the directions of the anisotropic axes of DyIII ions through utilizing two kinds of organic ligands or replacing DyIII ions by FeIII ions. CrystEngComm 2019. [DOI: 10.1039/c9ce00894b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two complexes based on Dy4 or Fe2Dy2 tetrahedral unit have been obtained by employing mixed organic ligands. The directions of the easy magnetization for the DyIII in both complexes were successfully modulated.
Collapse
Affiliation(s)
- Hui-Sheng Wang
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| | - Yong Chen
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210046
| | - Cheng-Ling Yin
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| | - Zaichao Zhang
- Jiangsu Key Laboratory for the Chemistry of Low-dimensional Materials
- School of Chemistry and Chemical Engineering
- Huaiyin Normal University
- Huaiyin 223300
- P. R. China
| | - Zhi-Quan Pan
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| |
Collapse
|
33
|
Chen Y, Long QQ, Hu ZB, Wang HS, Huang ZY, Chen W, Song Y, Zhang ZC, Yang FJ. Synthesis, crystal structures and magnetic properties of a series of pentanuclear heterometallic [CuII3LnIII2] (Ln = Ho, Dy, and Gd) complexes containing mixed organic ligands. NEW J CHEM 2019. [DOI: 10.1039/c9nj00892f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three novel heterometallic compounds [CuII3LnIII2] [Ln = Ho (1), Dy (2) and Gd (3)] containing mixed organic ligands were obtained. 1 and 2 show slow magnetic relaxation behaviour.
Collapse
Affiliation(s)
- Yong Chen
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| | - Qiao-Qiao Long
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210046
- P. R. China
| | - Hui-Sheng Wang
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| | - Zhi-Yong Huang
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| | - Wei Chen
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210046
- P. R. China
| | - Zai-Chao Zhang
- Jiangsu Key Laboratory for the Chemistry of Low-dimensional Materials
- School of Chemistry and Chemical Engineering
- Huaiyin Normal University
- P. R. China
| | - Feng-Jun Yang
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| |
Collapse
|
34
|
Wang HS, Yin CL, Hu ZB, Chen Y, Pan ZQ, Song Y, Zhang YQ, Zhang ZC. Regulation of magnetic relaxation behavior by replacing 3d transition metal ions in [M2Dy2] complexes containing two different organic chelating ligands. Dalton Trans 2019; 48:10011-10022. [DOI: 10.1039/c9dt00774a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two [MIII2DyIII2] complexes (M = Fe for 1 and Co for 2) with mixed organic ligands were obtained. Complex 2 exhibits single molecule magnet behavior with Ueff = 64.0(9) K.
Collapse
Affiliation(s)
- Hui-Sheng Wang
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| | - Cheng-Ling Yin
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210046
| | - Yong Chen
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| | - Zhi-Quan Pan
- School of Chemistry and Environmental Engineering
- Key Laboratory of Green Chemical Process of Ministry of Education
- Wuhan Institute of Technology
- Wuhan 430074
- P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210046
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Zai-Chao Zhang
- Jiangsu Key Laboratory for the Chemistry of Low-dimensional Materials
- School of Chemistry and Chemical Engineering
- Huaiyin Normal University
- P. R. China
| |
Collapse
|