1
|
Farooq S, Malla JA, Nedyalkova M, Freire RVM, Mandal I, Crochet A, Salentinig S, Lattuada M, McTernan CT, Kilbinger AFM. Rapid Water Permeation by Aramid Foldamer Nanochannels With Hydrophobic Interiors. Angew Chem Int Ed Engl 2025; 64:e202504170. [PMID: 40127140 PMCID: PMC7617624 DOI: 10.1002/anie.202504170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
Aquaporins are natural proteins that rapidly transport water across cell membranes, maintaining homeostasis, whilst strictly excluding salt. This has inspired their use in water purification and desalination, a critical emerging need. However, stability, scalability, and cost have prevented their widespread adoption in water purification membrane technologies. As such, attention has turned to the use of artificial water channels, with pore-functionalized polymers and macrocycles providing a powerful alternative. Whilst impressive rates of transport have been achieved, the combination of a scalable, high-yielding synthesis and efficient transport has not yet been reported. Herein, we report such a system, with densely functionalized channel interiors, synthesized by high-yielding living polymerization with low polydispersities, showing high salt exclusion and excellent water transport rates. Our aramid foldamers create artificial water channels with hydrophobic interiors and single-channel water permeability rates of up to 108 water molecules per second per channel, approaching the range of natural aquaporins (c. 109). We show that water transport rates closely correspond to the helical length, with the polymer that most closely matches bilayer thickness showing optimal efficacy, as supported by molecular dynamics (MD) simulations. Our work provides a basis for the scalable synthesis of next-generation artificial water channels.
Collapse
Affiliation(s)
- Saquib Farooq
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Javid Ahmad Malla
- Artificial Molecular Machinery Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK & Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, SE1 1DB, UK
| | - Miroslava Nedyalkova
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Rafael V. M. Freire
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Indradip Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Aurelien Crochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| | - Charlie T. McTernan
- Artificial Molecular Machinery Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK & Department of Chemistry, Britannia House, 7 Trinity Street, King’s College London, SE1 1DB, UK
| | - Andreas F. M. Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700Fribourg, Switzerland
| |
Collapse
|
2
|
Li C, Wu Y, Bao S, Li H, Xu Z, Yan J, Yu X, He L, Zhang T, Liu W, Hou S, Zhang Y, Xu J, Yan T, Wang T, Yan Y, Liu J. Photo-Switchable Supramolecular Interactions Regulate K + Transmembrane Transport and Cancer Cell Apoptosis. J Am Chem Soc 2025; 147:14139-14153. [PMID: 40111177 DOI: 10.1021/jacs.4c14583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Natural channel proteins (NCPs) have numerous ion transport modes, but it remains a big challenge to replicate this trait by artificial ion transport systems. Herein, we present an azobenzene-incorporated single-chain random heteropolymers (RHPs)-derived biomimetic K+ channel P3, which can switch between three ion transport states ("ON," "Partially OFF," and "Totally OFF") in both liposomes and cancer cells. The conformational adjustments of P3 activated by light-modulating two groups of supramolecular interactions ((1) hydrogen bonding and π-π interactions; (2) host-guest interactions) realize these switches, resembling the protein mechanisms that govern activity. Underlying molecular mechanisms are the photoisomerization of azobenzene moieties in P3 and their complexation with β-cyclodextrin (β-CD), enabling the exploit of a "one stone (azobenzene moiety), two birds (supramolecular interactions)" strategy. Mechanistic investigations demonstrate that P3-induced substantial K+ efflux (a 50% drop within just 4 min) causes endoplasmic reticulum (ER) stress, intriguing Ca2+ sparks, enhanced reactive oxygen species (ROS), and finally severe mitochondria-dependent apoptosis. This NCP-like channel (P3) is expected to provide new opportunities for a deeper understanding of the internal mechanisms of NCPs, as well as for treating cancer and other diseases.
Collapse
Affiliation(s)
- Cong Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yaqi Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Sheng Bao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Hui Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhengwei Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Xiaoxuan Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Lei He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Tianlong Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Wang Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Shida Hou
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yang Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Tingting Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
3
|
Zhang D, Chang W, Shen J, Zeng H. Aromatic foldamer-derived transmembrane transporters. Chem Commun (Camb) 2024; 60:13468-13491. [PMID: 39466066 DOI: 10.1039/d4cc04388j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This review is the first to focus on transmembrane transporters derived from aromatic foldamers, with most studies reported over the past decade. These foldamers have made significant strides in mimicking the essential functions of natural ion channel proteins. With their aromatic backbones rigidified by intramolecular hydrogen bonds or differential repulsive forces, this innovative family of molecules stands out for its structural diversity and functional adaptability. They achieve efficient and selective ion and molecule transport across lipid bilayers via carefully designed helical structures and tunable large cavities. Recent developments in this field highlight the transformative potential of foldamers in therapeutic applications and biomaterial engineering. Key advances include innovative molecular engineering strategies that enable highly selective ion transport by fine-tuning structural and functional attributes. Specific modifications to macrocyclic or helical foldamer structures have allowed precise control over ion selectivity and transport efficiency, with notable selectivity for K+, Li+, H+ and water molecules. Although challenges remain, future directions may focus on more innovative molecular designs, optimizing synthetic methods, improving membrane transport properties, integrating responsive designs that adapt to environmental stimuli, and fostering interdisciplinary collaborations. By emphasizing the pivotal role of aromatic foldamers in modern chemistry, this review aims to inspire further development, offering new molecular toolboxes and strategies to address technological and biological challenges in chemistry, biology, medicine, and materials science.
Collapse
Affiliation(s)
- Danyang Zhang
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Wenju Chang
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Jie Shen
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| |
Collapse
|
4
|
Deng S, Li Z, Yuan L, Shen J, Zeng H. Light-Powered Propeller-like Transporter for Boosted Transmembrane Ion Transport. NANO LETTERS 2024; 24:10750-10758. [PMID: 39177063 DOI: 10.1021/acs.nanolett.4c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Membrane-active molecular machines represent a recently emerging, yet important line of expansion in the field of artificial transmembrane transporters. Their hitherto demonstrated limited types (molecular swing, ion fishers, shuttlers, rotors, etc.) certainly call for new inspiring developments. Here, we report a very first motorized ion-transporting carrier-type transporter, i.e., a modularly tunable, light-powered propeller-like transporter derived from Feringa's molecular motor for consistently boosting transmembrane ion transport under continuous UV light irradiation. Based on the EC50 values, the molecular propeller-mediated ion transport activities under UV light irradiation for 300 s are 2.31, 1.74, 2.29, 2.80, and 2.92 times those values obtained without irradiation for Li+, Na+, K+, Rb+, and Cs+ ions, respectively, with EC50 value as low as 0.71 mol % for K+ ion under light irradiation.
Collapse
Affiliation(s)
- Shaowen Deng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lin Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425100, China
| | - Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
5
|
Li C, Wu Y, Zhu Y, Yan J, Liu S, Xu J, Fa S, Yan T, Zhu D, Yan Y, Liu J. Molecular Motor-Driven Light-Controlled Logic-Gated K + Channel for Cancer Cell Apoptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312352. [PMID: 38301140 DOI: 10.1002/adma.202312352] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Developing artificial ion transport systems, which process complicated information and step-wise regulate properties, is essential for deeply comprehending the subtle dynamic behaviors of natural channel proteins (NCPs). Here a photo-controlled logic-gated K+ channel based on single-chain random heteropolymers containing molecular motors, exhibiting multi-core processor-like properties to step-wise control ion transport is reported. Designed with oxygen, deoxygenation, and different wavelengths of light as input signals, complicated logical circuits comprising "YES", "AND", "OR" and "NOT" gate components are established. Implementing these logical circuits with K+ transport efficiencies as output signals, multiple state transitions including "ON", "Partially OFF" and "Totally OFF" in liposomes and cancer cells are realized, further causing step-wise anticancer treatments. Dramatic K+ efflux in the "ON" state (decrease by 50% within 7 min) significantly induces cancer cell apoptosis. This integrated logic-gated strategy will be expanded toward understanding the delicate mechanism underlying NCPs and treating cancer or other diseases is expected.
Collapse
Affiliation(s)
- Cong Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yaqi Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yihang Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jing Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Shengda Liu
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shixin Fa
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Tengfei Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dingcheng Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yi Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
6
|
Yuan X, Shen J, Zeng H. Artificial transmembrane potassium transporters: designs, functions, mechanisms and applications. Chem Commun (Camb) 2024; 60:482-500. [PMID: 38111319 DOI: 10.1039/d3cc04488b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Potassium channels represent the most prevalent class of ion channels, exerting regulatory control over numerous vital biological processes, including muscle contraction, neurotransmitter release, cell proliferation, and apoptosis. The seamless integration of astonishing functions into a sophisticated structure, as seen in these protein channels, inspires the chemical community to develop artificial versions, gearing toward simplifying their structure while replicating their key functions. In particular, over the past ten years or so, a number of elegant artificial potassium transporters have emerged, demonstrating high selectivity, high transport efficiency or unprecedented transport mechanisms. In this review, we will provide a detailed exposition of these artificial potassium transporters that are derived from a single molecular backbone or self-assembled from multiple components, with their respective structural designs, channel functions, transport mechanisms and biomedical applications thoroughly reviewed.
Collapse
Affiliation(s)
- Xiyu Yuan
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Jie Shen
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou, Fujian 350116, China.
| |
Collapse
|
7
|
Shen J, Roy A, Joshi H, Samineni L, Ye R, Tu YM, Song W, Skiles M, Kumar M, Aksimentiev A, Zeng H. Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water Transport. NANO LETTERS 2022; 22:4831-4838. [PMID: 35674810 DOI: 10.1021/acs.nanolett.2c01137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we report on a novel class of fluorofoldamer-based artificial water channels (AWCs) that combines excellent water transport rate and selectivity with structural simplicity and robustness. Produced by a facile one-pot copolymerization reaction under mild conditions, the best-performing channel (AWC 1) is an n-C8H17-decorated foldamer nanotube with an average channel length of 2.8 nm and a pore diameter of 5.2 Å. AWC 1 demonstrates an ultrafast water conduction rate of 1.4 × 1010 H2O/s per channel, outperforming the archetypal biological water channel, aquaporin 1, while excluding salts (i.e., NaCl and KCl) and protons. Unique to this class of channels, the inwardly facing C(sp2)-F atoms being the most electronegative in the periodic table are proposed as being critical to enabling the ultrafast and superselective water transport properties by decreasing the channel's cavity and enhancing the channel wall smoothness via reducing intermolecular forces with water molecules or hydrated ions.
Collapse
Affiliation(s)
- Jie Shen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Arundhati Roy
- Department of Pharmacy, Ludwig Maximilian University Munich Butenandtstraße 5-13, Munich 81377, Germany
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Laxmicharan Samineni
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ruijuan Ye
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yu-Ming Tu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Woochul Song
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew Skiles
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
8
|
Shen Y, Fei F, Zhong Y, Fan C, Sun J, Hu J, Gong B, Czajkowsky DM, Shao Z. Controlling Water Flow through a Synthetic Nanopore with Permeable Cations. ACS CENTRAL SCIENCE 2021; 7:2092-2098. [PMID: 34963901 PMCID: PMC8704043 DOI: 10.1021/acscentsci.1c01218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 05/19/2023]
Abstract
There is presently intense interest in the development of synthetic nanopores that recapitulate the functional properties of biological water channels for a wide range of applications. To date, all known synthetic water channels have a hydrophobic lumen, and while many exhibit a comparable rate of water transport as biological water channels, there is presently no rationally designed system with the ability to regulate water transport, a critical property of many natural water channels. Here, we describe a self-assembling nanopore consisting of stacked macrocyclic molecules with a hybrid hydrophilic/hydrophobic lumen exhibiting water transport that can be regulated by alkali metal ions. Stopped-flow kinetic assays reveal a non-monotonic-dependence of transport on cation size as well as a strikingly broad range of water flow, from essentially none in the presence of the sodium ion to as high a flow as that of the biological water channel, aquaporin 1, in the absence of the cations. All-atom molecular dynamics simulations show that the mechanism underlying the observed sensitivity is the binding of cations to defined sites within this hybrid pore, which perturbs water flow through the channel. Thus, beyond revealing insights into factors that can modulate a high-flux water transport through sub-nm pores, the obtained results provide a proof-of-concept for the rational design of next-generation, controllable synthetic water channels.
Collapse
Affiliation(s)
- Yi Shen
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Fan Fei
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Yulong Zhong
- Department
of Chemistry, The State University of New
York at Buffalo, Buffalo, New York 14260, United States
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Jielin Sun
- Shanghai
Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine
(Ministry of Education), Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Jun Hu
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Synchrotron
Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bing Gong
- Department
of Chemistry, The State University of New
York at Buffalo, Buffalo, New York 14260, United States
| | - Daniel M. Czajkowsky
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Zhifeng Shao
- School
of Biomedical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Shen J, Han JJY, Ye R, Zeng H. Molecular rotors as a class of generally highly active ion transporters. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1082-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Tunable membranes incorporating artificial water channels for high-performance brackish/low-salinity water reverse osmosis desalination. Proc Natl Acad Sci U S A 2021; 118:2022200118. [PMID: 34493653 DOI: 10.1073/pnas.2022200118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane-based technologies have a tremendous role in water purification and desalination. Inspired by biological proteins, artificial water channels (AWCs) have been proposed to overcome the permeability/selectivity trade-off of desalination processes. Promising strategies exploiting the AWC with angstrom-scale selectivity have revealed their impressive performances when embedded in bilayer membranes. Herein, we demonstrate that self-assembled imidazole-quartet (I-quartet) AWCs are macroscopically incorporated within industrially relevant reverse osmosis membranes. In particular, we explore the best combination between I-quartet AWC and m-phenylenediamine (MPD) monomer to achieve a seamless incorporation of AWC in a defect-free polyamide membrane. The performance of the membranes is evaluated by cross-flow filtration under real reverse osmosis conditions (15 to 20 bar of applied pressure) by filtration of brackish feed streams. The optimized bioinspired membranes achieve an unprecedented improvement, resulting in more than twice (up to 6.9 L⋅m-2⋅h-1⋅bar-1) water permeance of analogous commercial membranes, while maintaining excellent NaCl rejection (>99.5%). They show also excellent performance in the purification of low-salinity water under low-pressure conditions (6 bar of applied pressure) with fluxes up to 35 L⋅m-2⋅h-1 and 97.5 to 99.3% observed rejection.
Collapse
|
11
|
Roy A, Shen J, Joshi H, Song W, Tu YM, Chowdhury R, Ye R, Li N, Ren C, Kumar M, Aksimentiev A, Zeng H. Foldamer-based ultrapermeable and highly selective artificial water channels that exclude protons. NATURE NANOTECHNOLOGY 2021; 16:911-917. [PMID: 34017100 DOI: 10.1038/s41565-021-00915-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The outstanding capacity of aquaporins (AQPs) for mediating highly selective superfast water transport1-7 has inspired recent development of supramolecular monovalent ion-excluding artificial water channels (AWCs). AWC-based bioinspired membranes are proposed for desalination, water purification and other separation applications8-18. While some recent progress has been made in synthesizing AWCs that approach the water permeability and ion selectivity of AQPs, a hallmark feature of AQPs-high water transport while excluding protons-has not been reproduced. We report a class of biomimetic, helically folded pore-forming polymeric foldamers that can serve as long-sought-after highly selective ultrafast water-conducting channels with performance exceeding those of AQPs (1.1 × 1010 water molecules per second for AQP1), with high water-over-monovalent-ion transport selectivity (~108 water molecules over Cl- ion) conferred by the modularly tunable hydrophobicity of the interior pore surface. The best-performing AWC reported here delivers water transport at an exceptionally high rate, namely, 2.5 times that of AQP1, while concurrently rejecting salts (NaCl and KCl) and even protons.
Collapse
Affiliation(s)
- Arundhati Roy
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | - Jie Shen
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Woochul Song
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yu-Ming Tu
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Ruijuan Ye
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China
| | - Ning Li
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore
| | | | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huaqiang Zeng
- Department of Chemistry, College of Science, Hainan University, Haikou, Hainan, China.
- Institute of Advanced Synthesis, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
Qi S, Zhang C, Yu H, Zhang J, Yan T, Lin Z, Yang B, Dong Z. Foldamer-Based Potassium Channels with High Ion Selectivity and Transport Activity. J Am Chem Soc 2021; 143:3284-3288. [PMID: 33645973 DOI: 10.1021/jacs.0c12128] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small molecules that independently perform natural channel-like functions show greatly potential in the treatment of human diseases. Taking advantage of aromatic helical scaffolds, we develop a kind of foldamer-based ion channels with lumen size varying from 3.8 to 2.3 Å through a sequence substitution strategy. Our results clearly elucidate the importance of channel size in ion transport selectivity in molecular detail, eventually leading to the discoveries of the best artificial K+ channel by far and a rare sodium-preferential channel as well. High K+ selectivity and transport activity together make foldamers promising in therapeutic applications.
Collapse
Affiliation(s)
- Shuaiwei Qi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chenyang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Jing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tengfei Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ze Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
13
|
Huang L, Di Vincenzo M, Li Y, Barboiu M. Artificial Water Channels: Towards Biomimetic Membranes for Desalination. Chemistry 2020; 27:2224-2239. [DOI: 10.1002/chem.202003470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Li‐Bo Huang
- Lehn Institute of Functional Materials, School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Maria Di Vincenzo
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Yuhao Li
- Lehn Institute of Functional Materials, School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Mihail Barboiu
- Lehn Institute of Functional Materials, School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
14
|
Zheng S, Huang L, Sun Z, Barboiu M. Self‐Assembled Artificial Ion‐Channels toward Natural Selection of Functions. Angew Chem Int Ed Engl 2020; 60:566-597. [DOI: 10.1002/anie.201915287] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
15
|
Zheng S, Huang L, Sun Z, Barboiu M. Selbstorganisierte künstliche Ionenkanäle für die natürliche Selektion von Funktionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| |
Collapse
|
16
|
Chen J, Li Q, Wu P, Liu J, Wang D, Yuan X, Zheng R, Sun R, Li L. Cyclic γ-Peptides With Transmembrane Water Channel Properties. Front Chem 2020; 8:368. [PMID: 32426330 PMCID: PMC7205449 DOI: 10.3389/fchem.2020.00368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/08/2020] [Indexed: 01/14/2023] Open
Abstract
Self-assembling peptides can be used to design new materials for medical and biological applications. Here we synthesized and characterized two novel cyclic γ-peptides (γ-CPs) with hydrophobic inner surfaces. The NMR and FT-IR studies confirmed that the CPs could self-assemble into parallel stacking structures via intermolecular H-bonds and π-π interactions. The morphologies of the self-assembly CPs showed bundles of nanotubes via transmission electron microscopy (TEM); these nanotubes form water channels to transport water across the lipid membrane. The properties of blocking the transport of protons like natural water channels showed that the hydrophobic inner surfaces are important in artificial transmembrane water channel designs. These studies also showed that water transport was a function of pore size and length of the assemblies.
Collapse
Affiliation(s)
- Jie Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Qiang Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Pengchao Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Juan Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Dan Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaohong Yuan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Renlin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Rongqin Sun
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
17
|
Zhang Q, Zhang YE, Tong S, Wang MX. Hydrocarbon Belts with Truncated Cone Structures. J Am Chem Soc 2020; 142:1196-1199. [DOI: 10.1021/jacs.9b12181] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qian Zhang
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yan-E Zhang
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuo Tong
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mei-Xiang Wang
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|