1
|
Chalil Oglou R, Ulusoy Ghobadi TG, Ozbay E, Karadas F. "Plug and Play" Photosensitizer-Catalyst Dyads for Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21131-21140. [PMID: 35482427 PMCID: PMC9100495 DOI: 10.1021/acsami.2c01102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
We present a simple and easy-to-scale synthetic method to plug common organic photosensitizers into a cyanide-based network structure for the development of photosensitizer-water oxidation catalyst (PS-WOC) dyad assemblies for the photocatalytic water oxidation process. Three photosensitizers, one of which absorbs red light similar to P680 in photosystem II, were utilized to harvest different regions of the solar spectrum. Photosensitizers are covalently coordinated to CoFe Prussian blue structures to prepare PS-WOC dyads. All dyads exhibit steady water oxidation catalytic activities throughout a 6 h photocatalytic experiment. Our results demonstrate that the covalent coordination between the PS and WOC group not only enhances the photocatalytic activity but also improves the robustness of the organic PS group. The photocatalytic activity of "plug and play" dyads relies on several structural and electronic parameters, including the position of the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the PS with respect to the HOMO level of the catalytic site, the intensity and wavelength of the absorption band of the PS, and the number of catalytic sites.
Collapse
Affiliation(s)
- Ramadan Chalil Oglou
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
| | | | - Ekmel Ozbay
- NANOTAM—Nanotechnology
Research Center, Bilkent University, 06800 Ankara, Turkey
- Department
of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey
- Department
of Physics, Faculty of Science Bilkent University, 06800 Ankara, Turkey
| | - Ferdi Karadas
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Department
of Chemistry, Faculty of Science, Bilkent
University, 06800 Ankara, Turkey
| |
Collapse
|
2
|
Ghobadi TGU, Ghobadi A, Demirtas M, Buyuktemiz M, Ozvural KN, Yildiz EA, Erdem E, Yaglioglu HG, Durgun E, Dede Y, Ozbay E, Karadas F. Building an Iron Chromophore Incorporating Prussian Blue Analogue for Photoelectrochemical Water Oxidation. Chemistry 2021; 27:8966-8976. [PMID: 33929068 DOI: 10.1002/chem.202100654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 11/06/2022]
Abstract
The replacement of traditional ruthenium-based photosensitizers with low-cost and abundant iron analogs is a key step for the advancement of scalable and sustainable dye-sensitized water splitting cells. In this proof-of-concept study, a pyridinium ligand coordinated pentacyanoferrate(II) chromophore is used to construct a cyanide-based CoFe extended bulk framework, in which the iron photosensitizer units are connected to cobalt water oxidation catalytic sites through cyanide linkers. The iron-sensitized photoanode exhibits exceptional stability for at least 5 h at pH 7 and features its photosensitizing ability with an incident photon-to-current conversion capacity up to 500 nm with nanosecond scale excited state lifetime. Ultrafast transient absorption and computational studies reveal that iron and cobalt sites mutually support each other for charge separation via short bridging cyanide groups and for injection to the semiconductor in our proof-of-concept photoelectrochemical device. The reorganization of the excited states due to the mixing of electronic states of metal-based orbitals subsequently tailor the electron transfer cascade during the photoelectrochemical process. This breakthrough in chromophore-catalyst assemblies will spark interest in dye-sensitization with robust bulk systems for photoconversion applications.
Collapse
Affiliation(s)
- T Gamze Ulusoy Ghobadi
- UNAM - National Nanotechnology Research Center Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Amir Ghobadi
- Department of Electrical and Electronics Engineering and NANOTAM - Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Merve Demirtas
- UNAM - National Nanotechnology Research Center Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Muhammed Buyuktemiz
- Department of Chemistry, Faculty of Science, Gazi University Teknikokullar, 06500, Ankara, Turkey
| | - Kubra N Ozvural
- Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Ankara, Turkey
| | - Emre Erdem
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - H Gul Yaglioglu
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Ankara, Turkey
| | - Engin Durgun
- UNAM - National Nanotechnology Research Center Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Yavuz Dede
- Department of Chemistry, Faculty of Science, Gazi University Teknikokullar, 06500, Ankara, Turkey
| | - Ekmel Ozbay
- UNAM - National Nanotechnology Research Center Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.,Department of Electrical and Electronics Engineering and NANOTAM - Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.,Department of Physics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Ferdi Karadas
- UNAM - National Nanotechnology Research Center Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.,Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| |
Collapse
|
3
|
Ulusoy Ghobadi TG, Ozbay E, Karadas F. How to Build Prussian Blue Based Water Oxidation Catalytic Assemblies: Common Trends and Strategies. Chemistry 2021; 27:3638-3649. [PMID: 33197292 DOI: 10.1002/chem.202004091] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/13/2020] [Indexed: 01/08/2023]
Abstract
Prussian blue (PB) and its analogues (PBAs) have at least a three-century-long history in coordination chemistry. Recently, cobalt-based PBAs have been acknowledged as efficient and robust water oxidation catalysts. Given the flexibility in their synthesis, the structure and morphology of cobalt-based PBAs have been modified for enhanced catalytic activity under electrochemical (EC), photocatalytic (PC), and photoelectrochemical (PEC) conditions. Here, in this review, the work on cobalt-based PBAs is presented in four sections: i) electrocatalytic water oxidation with bare PBAs, ii) photocatalytic processes in the presence of a photosensitizer (PS), iii) photoelectrochemical water oxidation by coupling PBAs to proper semiconductors (SCs), and iv) the utilization of PBA-PS assemblies coated on SCs for the dye-sensitized photoelectrochemical water oxidation. This review will guide readers through the structure and catalytic activity relationship in cobalt-based PBAs by describing the role of each structural component. Furthermore, this review aims to provide insight into common strategies to enhance the catalytic activity of PBAs.
Collapse
Affiliation(s)
- T Gamze Ulusoy Ghobadi
- Institute of Materials Science and Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Ekmel Ozbay
- NANOTAM-Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Ferdi Karadas
- Department of Chemistry, Bilkent University, Ankara, 06800, Turkey.,Institute of Materials Science and Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
4
|
Akbari SS, Karadas F. Precious Metal-Free Photocatalytic Water Oxidation by a Layered Double Hydroxide-Prussian Blue Analogue Hybrid Assembly. CHEMSUSCHEM 2021; 14:679-685. [PMID: 33159387 DOI: 10.1002/cssc.202002279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Indexed: 06/11/2023]
Abstract
The development of earth-abundant photocatalytic assemblies has been one of the bottlenecks for the advancement of scalable water splitting cells. In this study, a ZnCr layered double hydroxide and a CoFe Prussian blue analogue are combined to afford an earth-abundant photocatalytic assembly involving a visible light-absorbing semiconductor (SC) and a water oxidation catalyst (WOC). Compared to bare ZnCr-LDH, the SC-WOC hybrid assembly exhibits a threefold enhancement in photocatalytic activity, which is maintained for 6 h under photocatalytic conditions at pH 7. The band energy diagram was extracted from optical and electrochemical studies to elucidate the origin of the enhanced photocatalytic performance. This study marks a straightforward pathway to develop low-cost and precious metal-free assemblies for visible light-driven water oxidation.
Collapse
Affiliation(s)
- Sina Sadigh Akbari
- Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Ferdi Karadas
- Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
- UNAM - National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| |
Collapse
|
5
|
Gundogdu G, Ulusoy Ghobadi TG, Sadigh Akbari S, Ozbay E, Karadas F. Photocatalytic water oxidation with a Prussian blue modified brown TiO 2. Chem Commun (Camb) 2021; 57:508-511. [PMID: 33331359 DOI: 10.1039/d0cc07077g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A recently emerging visible light-absorbing semiconductor, brown TiO2 (b-TiO2), was coupled with a CoFe Prussian blue (PB) analogue to prepare an entirely earth-abundant semiconductor/water oxidation catalyst hybrid assembly. PB/b-TiO2 exhibits a sevenfold higher photocatalytic water oxidation activity compared to b-TiO2. An elegant band alignment unified with the optical absorption of b-TiO2 and excellent electronic dynamics of PB yield a high-performance photocatalytic system.
Collapse
Affiliation(s)
- Gulsum Gundogdu
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Turkey.
| | | | | | | | | |
Collapse
|
6
|
Ulusoy Ghobadi TG, Ghobadi A, Buyuktemiz M, Yildiz EA, Berna Yildiz D, Yaglioglu HG, Dede Y, Ozbay E, Karadas F. A Robust, Precious‐Metal‐Free Dye‐Sensitized Photoanode for Water Oxidation: A Nanosecond‐Long Excited‐State Lifetime through a Prussian Blue Analogue. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- T. Gamze Ulusoy Ghobadi
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Energy Engineering Faculty of Engineering Ankara University 06830 Ankara Turkey
| | - Amir Ghobadi
- Department of Electrical and Electronics Engineering and NANOTAM—Nanotechnology Research Center Bilkent University 06800 Ankara Turkey
| | - Muhammed Buyuktemiz
- Department of Chemistry Faculty of Science Gazi University Teknikokullar 06500 Ankara Turkey
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Dilara Berna Yildiz
- Department of Chemistry Faculty of Science Gazi University Teknikokullar 06500 Ankara Turkey
| | - H. Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Yavuz Dede
- Department of Chemistry Faculty of Science Gazi University Teknikokullar 06500 Ankara Turkey
| | - Ekmel Ozbay
- Department of Electrical and Electronics Engineering and NANOTAM—Nanotechnology Research Center Bilkent University 06800 Ankara Turkey
- Department of Physics Faculty of Science Bilkent University 06800 Ankara Turkey
| | - Ferdi Karadas
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Chemistry Faculty of Science Bilkent University 06800 Ankara Turkey
| |
Collapse
|
7
|
Ulusoy Ghobadi TG, Ghobadi A, Buyuktemiz M, Yildiz EA, Berna Yildiz D, Yaglioglu HG, Dede Y, Ozbay E, Karadas F. A Robust, Precious‐Metal‐Free Dye‐Sensitized Photoanode for Water Oxidation: A Nanosecond‐Long Excited‐State Lifetime through a Prussian Blue Analogue. Angew Chem Int Ed Engl 2020; 59:4082-4090. [DOI: 10.1002/anie.201914743] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/20/2022]
Affiliation(s)
- T. Gamze Ulusoy Ghobadi
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Energy Engineering Faculty of Engineering Ankara University 06830 Ankara Turkey
| | - Amir Ghobadi
- Department of Electrical and Electronics Engineering and NANOTAM—Nanotechnology Research Center Bilkent University 06800 Ankara Turkey
| | - Muhammed Buyuktemiz
- Department of Chemistry Faculty of Science Gazi University Teknikokullar 06500 Ankara Turkey
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Dilara Berna Yildiz
- Department of Chemistry Faculty of Science Gazi University Teknikokullar 06500 Ankara Turkey
| | - H. Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Yavuz Dede
- Department of Chemistry Faculty of Science Gazi University Teknikokullar 06500 Ankara Turkey
| | - Ekmel Ozbay
- Department of Electrical and Electronics Engineering and NANOTAM—Nanotechnology Research Center Bilkent University 06800 Ankara Turkey
- Department of Physics Faculty of Science Bilkent University 06800 Ankara Turkey
| | - Ferdi Karadas
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Chemistry Faculty of Science Bilkent University 06800 Ankara Turkey
| |
Collapse
|