1
|
Ford JW, VanNatta JM, Mondal D, Lin CM, Deng Y, Bai R, Hamel E, Trawick ML, Pinney KG. Drug-Linker Constructs Bearing Unique Dual-Mechanism Tubulin Binding Payloads Tethered through Cleavable and Non-Cleavable Linkers. Tetrahedron 2025; 171:134350. [PMID: 39801742 PMCID: PMC11722312 DOI: 10.1016/j.tet.2024.134350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Antibody-drug conjugates (ADCs) have advanced as a mainstay among the most promising cancer therapeutics, offering enhanced antigen targeting and encompassing wide diversity in their linker and payload components. Small-molecule inhibitors of tubulin polymerization have found success as payloads in FDA approved ADCs and represent further promise in next-generation, pre-clinical and developmental ADCs. Unique dual-mechanism payloads (previously designed and synthesized in our laboratories) function as both potent antiproliferative agents and promising vascular disrupting agents capable of imparting selective and effective damage to tumor-associated microvessels. These payloads have been incorporated into a variety of drug-linker constructs utilizing the clinically relevant cathepsin B cleavable Val-Cit dipeptide linker, employed within several FDA approved ADCs, along with other non-cleavable constructs. Various synthetic strategies were evaluated to prepare these drug-linker constructs. Aniline-based payloads were incorporated utilizing the Val-Cit dipeptide linker similar to FDA approved ADCs such as Adcetris® (brentuximab vedotin). An additional self-immolative group, previously described in the literature for related model systems, was employed to tether the phenolic payloads. A variety of drug-linker constructs (with each bearing a unique dual mechanism payload) were synthesized and evaluated biologically for their enzyme-mediated release of payload and inhibition of tubulin polymerization. Following deactivation of the highly electrophilic maleimido terminus as its corresponding N-acetyl cysteine (NAC) derivative, the most promising construct (NAC-4) demonstrated approximately 90% release of an aniline-functionalized payload (1) upon treatment with cathepsins B or L over 90 minutes. Building on these promising results, future studies will examine the conjugation of drug-linker construct 4 to selected antibodies and engineered proteins and evaluate the biological activity of the resultant antibody-drug conjugates (ADCs).
Collapse
Affiliation(s)
- Jacob W Ford
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| | - Jennifer M VanNatta
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| | - Deboprosad Mondal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| | - Chen-Ming Lin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| | - Yuling Deng
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
2
|
VanNatta JM, Niu H, Carlson GJ, Pinney KG. Application of Chlorosulfonyl Isocyanate (CSI) in the Synthesis of Fused Tetracyclic Ketone Ring Systems. J Org Chem 2024; 89:15636-15651. [PMID: 39388523 PMCID: PMC11708961 DOI: 10.1021/acs.joc.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chlorosulfonyl isocyanate (CSI) is a complex reagent capable of facilitating numerous synthetic transformations, including lactam/lactone formation, sulfonylation, Friedel-Crafts-type acylations, and cycloadditions. Annulation reactions to form nitrogen-, oxygen-, and sulfur-bearing heterocycles have been observed with CSI; however, the application of CSI toward the generation of fused cyclic ketone ring systems has not been previously reported. A serendipitous discovery of the pertinence of CSI occurred during a structure-activity relationship campaign around our established lead benzosuberene-based molecule that functions as a potent inhibitor of tubulin polymerization. The benzylic olefin within this molecule represents a promising moiety for further functionalization. CSI was initially investigated as a reagent to effect transformation of this olefin to its corresponding β-lactam functionality, but instead resulted in an unexpected tetracyclic fused ring system in high yield (88%). This finding led to an exploration of the reactivity of CSI with various arenes. Benzosuberene analogues with varying functionalizations were synthesized and treated with CSI, with all examples resulting in a fused ring system except those bearing electron-withdrawing groups. Notably, simplified arene structures with fewer substituents were also observed to undergo cyclization under these conditions. This strategy represents a promising approach for the synthesis of appropriately functionalized tetracyclic ring systems.
Collapse
Affiliation(s)
- Jennifer M. VanNatta
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Haichan Niu
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Graham J. Carlson
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
3
|
Chen X, He Z, Xu S, Zou Y, Zhang Y. Chemical synthesis and application of aryldihydronaphthalene derivatives. RSC Adv 2024; 14:32174-32194. [PMID: 39399251 PMCID: PMC11467718 DOI: 10.1039/d4ra06517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024] Open
Abstract
Aryldihydronaphthalenes (ADHNs) and their derivatives are widely found in many types of natural products, bioactive compounds, and functional materials, and are also important synthetic intermediates in organic chemistry, attracting widespread attention from both organic and pharmaceutical chemists. In the past two decades, the chemical synthesis and biological activity of ADHNs and their derivatives have become two hot spots. This review summarizes the synthetic protocols of ADHN derivatives, introduces some representative examples of the reaction mechanism, and focuses on the research progress of ADHNs in natural product chemistry and chemical biology since 2000.
Collapse
Affiliation(s)
- Xia Chen
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology Wuhan 430065 China
| | - Zhaolong He
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology Wuhan 430065 China
| | - Shiqiang Xu
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology Wuhan 430065 China
| | - Yu Zou
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology Wuhan 430065 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
4
|
Sepehri S, Khedmati M, Yousef-Nejad F, Mahdavi M. Medicinal chemistry perspective on the structure-activity relationship of stilbene derivatives. RSC Adv 2024; 14:19823-19879. [PMID: 38903666 PMCID: PMC11188052 DOI: 10.1039/d4ra02867h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Stilbenes are a small family of polyphenolic secondary metabolites produced in a variety of closely related plant species. These compounds function as phytoalexins, aiding plant defense against phytopathogens and plants' adaptation to abiotic environmental factors. Structurally, some important phenolic compounds have a 14-carbon skeleton and usually have two isomeric forms, Z and E. Stilbenes contain two benzene rings linked by a molecule of ethanol or ethylene. Some derivatives of natural (poly)phenolic stilbenes such as resveratrol, pterostilbene, and combretastatin A-4 have shown various biological activities, such as anti-microbial, anti-cancer, and anti-inflammatory properties as well as protection against heart disease, Alzheimer's disease, and diabetes. Among stilbenes, resveratrol is certainly the most popular and extensively studied for its health properties. In recent years, an increasing number of stilbene compounds have been investigated for their bioactivity. This review focuses on the assessment of synthetic stilbene derivatives in terms of their biological activities and structure-activity relationship. The goal of this study is to consider the structural changes and different substitutions on phenyl rings that can improve the desired medicinal effects of stilbene-based compounds beyond the usual standards and subsequently discover biological activities by identifying effective alternatives of the evaluated compounds.
Collapse
Affiliation(s)
- Saghi Sepehri
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences Ardabil Iran +98-45-33522197 +98-45-33522437-39, ext. 164
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences Ardabil Iran
| | - Mina Khedmati
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences Ardabil Iran
| | - Faeze Yousef-Nejad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
5
|
Ren W, Deng Y, Ward JD, Vairin R, Bai R, Wanniarachchi HI, Hamal KB, Tankoano PE, Tamminga CS, Bueno LMA, Hamel E, Mason RP, Trawick ML, Pinney KG. Synthesis and biological evaluation of structurally diverse 6-aryl-3-aroyl-indole analogues as inhibitors of tubulin polymerization. Eur J Med Chem 2024; 263:115794. [PMID: 37984295 PMCID: PMC11019941 DOI: 10.1016/j.ejmech.2023.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 11/22/2023]
Abstract
The synthesis and evaluation of small-molecule inhibitors of tubulin polymerization remains a promising approach for the development of new therapeutic agents for cancer treatment. The natural products colchicine and combretastatin A-4 (CA4) inspired significant drug discovery campaigns targeting the colchicine site located on the beta-subunit of the tubulin heterodimer, but so far these efforts have not yielded an approved drug for cancer treatment in human patients. Interest in the colchicine site was enhanced by the discovery that a subset of colchicine site agents demonstrated dual functionality as both potent antiproliferative agents and effective vascular disrupting agents (VDAs). Our previous studies led to the discovery and development of a 2-aryl-3-aroyl-indole analogue (OXi8006) that inhibited tubulin polymerization and demonstrated low nM IC50 values against a variety of human cancer cell lines. A water-soluble phosphate prodrug salt (OXi8007), synthesized from OXi8006, displayed promising vascular disrupting activity in mouse models of cancer. To further extend structure-activity relationship correlations, a series of 6-aryl-3-aroyl-indole analogues was synthesized and evaluated for their inhibition of tubulin polymerization and cytotoxicity against human cancer cell lines. Several structurally diverse molecules in this small library were strong inhibitors of tubulin polymerization and of MCF-7 and MDA-MB-231 human breast cancer cells. One of the most promising analogues (KGP591) caused significant G2/M arrest of MDA-MB-231 cells, disrupted microtubule structure and cell morphology in MDA-MB-231 cells, and demonstrated significant inhibition of MDA-MB-231 cell migration in a wound healing (scratch) assay. A phosphate prodrug salt, KGP618, synthesized from its parent phenolic precursor, KGP591, demonstrated significant reduction in bioluminescence signal when evaluated in vivo against an orthotopic model of kidney cancer (RENCA-luc) in BALB/c mice, indicative of VDA efficacy. The most active compounds from this series offer promise as anticancer therapeutic agents.
Collapse
Affiliation(s)
- Wen Ren
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Yuling Deng
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Jacob D Ward
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Rebecca Vairin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Hashini I Wanniarachchi
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Khagendra B Hamal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Pouguiniseli E Tankoano
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Caleb S Tamminga
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Lorena M A Bueno
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Ralph P Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| |
Collapse
|
6
|
Ren W, Vairin R, Ward JD, Francis R, VanNatta J, Bai R, Tankoano PE, Deng Y, Hamel E, Trawick ML, Pinney KG. Structure Guided Design, Synthesis, and Biological Evaluation of Oxetane-Containing Indole Analogues. Bioorg Med Chem 2023; 92:117400. [PMID: 37556912 PMCID: PMC10848874 DOI: 10.1016/j.bmc.2023.117400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023]
Abstract
The oxetane functional group offers a variety of potential advantages when incorporated within appropriate therapeutic agents as a ketone surrogate. OXi8006, a 2-aryl-3-aroyl-indole analogue, functions as a small-molecule inhibitor of tubulin polymerization that has a dual mechanism of action as both an antiproliferative agent and a tumor-selective vascular disrupting agent. Replacement of the bridging ketone moiety in OXi8006 with an oxetane functional group has expanded structure activity relationship (SAR) knowledge and provided insights regarding oxetane incorporation within this class of molecules. A new synthetic method using an oxetane-containing tertiary alcohol subjected to Lewis acid catalyzed conditions led to successful Friedel-Crafts alkylation and yielded fourteen new oxetane-containing indole-based molecules. This synthetic approach represents the first method to successfully install an oxetane ring at the 3-position of a 2-aryl-indole system. Several analogues showed potent cytotoxicity (micromolar GI50 values) against human breast cancer cell lines (MCF-7 and MDA-MB-231) and a pancreatic cancer cell line (PANC-1), although they proved to be ineffective as inhibitors of tubulin polymerization. Molecular docking studies comparing colchicine with the OXi8006-oxetane analogue 5m provided a rationale for the differential interaction of these molecules with the colchicine site on the tubulin heterodimer.
Collapse
Affiliation(s)
- Wen Ren
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Rebecca Vairin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Jacob D Ward
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Ricardo Francis
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Jenny VanNatta
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Pouguiniseli E Tankoano
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Yuling Deng
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX 76798-7348, United States.
| |
Collapse
|
7
|
Liu L, Schuetze R, Gerberich JL, Lopez R, Odutola SO, Tanpure RP, Charlton-Sevcik AK, Tidmore JK, Taylor EAS, Kapur P, Hammers H, Trawick ML, Pinney KG, Mason RP. Demonstrating Tumor Vascular Disrupting Activity of the Small-Molecule Dihydronaphthalene Tubulin-Binding Agent OXi6196 as a Potential Therapeutic for Cancer Treatment. Cancers (Basel) 2022; 14:4208. [PMID: 36077745 PMCID: PMC9454770 DOI: 10.3390/cancers14174208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The vascular disrupting activity of a promising tubulin-binding agent (OXi6196) was demonstrated in mice in MDA-MB-231 human breast tumor xenografts growing orthotopically in mammary fat pad and syngeneic RENCA kidney tumors growing orthotopically in the kidney. To enhance water solubility, OXi6196, was derivatized as its corresponding phosphate prodrug salt OXi6197, facilitating effective delivery. OXi6197 is stable in water, but rapidly releases OXi6196 in the presence of alkaline phosphatase. At low nanomolar concentrations OXi6196 caused G2/M cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells and monolayers of rapidly growing HUVECs underwent concentration-dependent changes in their morphology. Loss of the microtubule structure and increased bundling of filamentous actin into stress fibers followed by cell collapse, rounding and blebbing was observed. OXi6196 (100 nM) disrupted capillary-like endothelial networks pre-established with HUVECs on Matrigel®. When prodrug OXi6197 was administered to mice bearing orthotopic MDA-MB-231-luc tumors, dynamic bioluminescence imaging (BLI) revealed dose-dependent vascular shutdown with >80% signal loss within 2 h at doses ≥30 mg/kg and >90% shutdown after 6 h for doses ≥35 mg/kg, which remained depressed by at least 70% after 24 h. Twice weekly treatment with prodrug OXi6197 (20 mg/kg) caused a significant tumor growth delay, but no overall survival benefit. Similar efficacy was observed for the first time in orthotopic RENCA-luc tumors, which showed massive hemorrhage and necrosis after 24 h. Twice weekly dosing with prodrug OXi6197 (35 mg/kg) caused tumor growth delay in most orthotopic RENCA tumors. Immunohistochemistry revealed extensive necrosis, though with surviving peripheral tissues. These results demonstrate effective vascular disruption at doses comparable to the most effective vascular-disrupting agents (VDAs) suggesting opportunities for further development.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeni L. Gerberich
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ramona Lopez
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel O. Odutola
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Rajendra P. Tanpure
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | | | - Justin K. Tidmore
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Emily A.-S. Taylor
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Payal Kapur
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hans Hammers
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Chen X, Zhong C, Duan X, Guan Z, Gu L, Luo Z, Chen Y, Zhang Y. A Removable Acyl Group Promoted the Intramolecular Dehydro-Diels-Alder Reaction of Styrene-Ynes: Highly Chemoselective Synthesis of Aryldihydronaphthalene Derivatives. J Org Chem 2022; 87:6601-6611. [PMID: 35500289 DOI: 10.1021/acs.joc.2c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A removable acyl group promoted the intramolecular didehydro-Diels-Alder reaction of styrene-ynes under mild reaction conditions is proposed. The reaction is free of metals and catalysts, is easy to perform, and exhibits good functional group tolerance, providing a highly chemoselective approach for obtaining the valuable aryldihydronaphthalene derivatives.
Collapse
Affiliation(s)
- Xia Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan 430062, China.,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cheng Zhong
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianxian Duan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenhua Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zengwei Luo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Oezdemir I, Li J, Song J, Hoyt K. 3-D Super-Resolution Ultrasound Imaging for Monitoring Early Changes in Breast Cancer after Treatment with a Vascular-Disrupting Agent. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM : [PROCEEDINGS]. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM 2021; 2021:10.1109/IUS52206.2021.9593426. [PMID: 38351971 PMCID: PMC10863700 DOI: 10.1109/ius52206.2021.9593426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The purpose of this research project was to evaluate the use of 3-dimensional (3-D) super-resolution ultrasound (SR-US) imaging to assess any early changes in breast cancer after treatment with a vascular-disrupting agent (VDA). A Vevo 3100 ultrasound system (FUJIFILM VisualSonics Inc) equipped with an MX 201 transducer was used for image acquisition. A total of 2.5 × 107 microbubbles (MBs) were injected into the tail vein of anesthetized breast cancer-bearing mice using repeat bolus injections every 5 min. A total of 10 stacks of ultrasound images were collected as the transducer was mechanically moved across the tumor at 0.6 mm intervals yielding a 6-mm thick volume. At each tumor location, a stack contained 1 × 104 frames of ultrasound data that were acquired at 463 frames/sec and stored as in-phase/quadrature (IQ) format. After motion correction, each temporal stack of ultrasound images was processed separately for clutter signal removal, which was followed by MB localization and enumeration before generation of the final SR-US image. After reconstruction of the 3-D SR-US volume dataset, the tumor microvasculature was enhanced using a multiscale vessel enhancement filter. Vessels from the resultant microvascular network were then segmented using an adaptive thresholding method. Finally, mean microvascular density (MVD) measurements from each tumor volume were computed as a summarizing statistic. While no differences were found between baseline SR-US image-derived measures of MVD (p = 0.76), these same measurements were significantly lower at 24 h after VDA treatment (p < 0.001). Overall, 3-D SR-US imaging detected early tumor changes following treatment with a vascular-targeted drug.
Collapse
Affiliation(s)
- Ipek Oezdemir
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Junjie Li
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Jane Song
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
10
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
11
|
Structure-activity relationships and antiproliferative effects of 1,2,3,4-4H-quinoxaline derivatives as tubulin polymerization inhibitors. Bioorg Chem 2021; 110:104793. [PMID: 33770673 DOI: 10.1016/j.bioorg.2021.104793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
Colchicine binding site inhibitors (CBSIs) hold great potential for the treatment of various tumors and they can overcome multidrug resistance which the existing tubulin inhibitors such as paclitaxel and vinorelbine are faced with. Herein, we report the design, synthesis and biological evaluation of a series of tetrahydro-quinoxaline derivatives as colchicine binding site inhibitors. All the synthesized compounds were evaluated for their in vitro antiproliferative activities against HT-29 and Hela cancer cell lines, and most of the target compounds demonstrated moderate to strong activities towards two tumor cell lines. In addition, the structure-activity relationships of these derivatives were also discussed. Among them, compounds 11a and 11b showed the most potent activities. Moreover, compound 11a inhibited the tubulin polymerization in both cell-free and cellular assays. Further profiling of compound 11a revealed that it arrested cell cycle in G2/M and induced cell apoptosis in a dose-dependent manner. Furthermore, molecular docking study proved that compound 11a acted on the colchicine binding site. Therefore, 11a is a promising candidate for the discovery of colchicine binding site inhibitors.
Collapse
|
12
|
Sigalapalli DK, Kiranmai G, Tokala R, Tripura C, Ambatwar R, Nunewar SN, Kadagathur M, Shankaraiah N, Nagesh N, Nagendra Babu B, Tangellamudi ND. Targeting tubulin polymerization and DNA binding of 4-thiazolidinone–umbelliferone hybrids: synthesis and cytotoxicity evaluation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03135j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of a series of combretastatin A-4 inspired novel molecular hybrids of 4-thiazolidinone–umbelliferone as prominent cytotoxic agents was reported.
Collapse
Affiliation(s)
- Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Gaddam Kiranmai
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Ramya Tokala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Chaturvedula Tripura
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Saiprasad N. Nunewar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Manasa Kadagathur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Bathini Nagendra Babu
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Neelima D. Tangellamudi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
13
|
Pecyna P, Wargula J, Murias M, Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020; 10:E1111. [PMID: 32726968 PMCID: PMC7465418 DOI: 10.3390/biom10081111] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
Affiliation(s)
- Paulina Pecyna
- Department of Genetics and Pharmaceutical Microbiology, University of Medical Sciences, Swiecickiego 4 Street, 60-781 Poznan, Poland;
| | - Joanna Wargula
- Department of Organic Chemistry, University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland;
| | - Marek Murias
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| | - Malgorzata Kucinska
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| |
Collapse
|
14
|
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
|
15
|
Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals (Basel) 2020; 13:ph13010008. [PMID: 31947889 PMCID: PMC7168938 DOI: 10.3390/ph13010008] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
It is over 50 years since the discovery of microtubules, and they have become one of the most important drug targets for anti-cancer therapies. Microtubules are predominantly composed of the protein tubulin, which contains a number of different binding sites for small-molecule drugs. There is continued interest in drug development for compounds targeting the colchicine-binding site of tubulin, termed colchicine-binding site inhibitors (CBSIs). This review highlights CBSIs discovered through diverse sources: from natural compounds, rational design, serendipitously and via high-throughput screening. We provide an update on CBSIs reported in the past three years and discuss the clinical status of CBSIs. It is likely that efforts will continue to develop CBSIs for a diverse set of cancers, and this review provides a timely update on recent developments.
Collapse
|
16
|
Novel [1,2,4]triazolo[1,5-a]pyrimidine derivatives as potent antitubulin agents: Design, multicomponent synthesis and antiproliferative activities. Bioorg Chem 2019; 92:103260. [PMID: 31525523 DOI: 10.1016/j.bioorg.2019.103260] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022]
Abstract
As restricted CA-4 analogues, a novel series of [1,2,4]triazolo[1,5-a]pyrimidines possessing 3,4,5-trimethoxylphenyl groups has been achieved successfully via an efficient one-pot three-component reaction of 3-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazol-5-amine, 1,3-dicarbonyl compounds and aldehydes. Initial biological evaluation demonstrated some of target compounds displayed potent antitumor activity in vitro against three cancer cell lines. Among them, the most highly active analogue 26 inhibited the growth of HeLa, and A549 cell lines with IC50 values at 0.75, and 1.02 μM, respectively, indicating excellent selectivity over non-tumoural cell line HEK-293 (IC50 = 29.94 μM) which suggested that the target compounds might possess a high safety index. Moreover, cell cycle analysis illustrated that the analogue 26 significantly induced HeLa cells arrest in G2/M phase, meanwhile the compound could dramatically affect cell morphology and microtubule networks. In addition, compound 28 exhibited potent anti-tubulin activity with IC50 values of 9.90 μM, and molecular docking studies revealed the analogue occupied the colchicine-binding site of tubulin. These observations suggest that [1,2,4]triazolo[1,5-a]pyrimidines represent a new class of tubulin polymerization inhibitors and well worth further investigation aiming to generate potential anticancer agents.
Collapse
|
17
|
Maguire CJ, Carlson GJ, Ford JW, Strecker TE, Hamel E, Trawick ML, Pinney KG. Synthesis and biological evaluation of structurally diverse α-conformationally restricted chalcones and related analogues. MEDCHEMCOMM 2019; 10:1445-1456. [PMID: 31534659 PMCID: PMC6734540 DOI: 10.1039/c9md00127a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022]
Abstract
Numerous members of the combretastatin and chalcone families of natural products function as inhibitors of tubulin polymerization through a binding interaction at the colchicine site on β-tubulin. These molecular scaffolds inspired the development of many structurally modified derivatives and analogues as promising anticancer agents. A productive design blueprint that involved molecular hybridization of the pharmacophore moieties of combretastatin A-4 (CA4) and the chalcones led to the discovery of two promising lead molecules referred to as KGP413 and SD400. The corresponding water-soluble phosphate prodrug salts of KGP413 and SD400 selectively damaged tumor-associated vasculature, thus highlighting the potential development of these molecules as vascular disrupting agents (VDAs). These previous studies prompted our current investigation of conformationally restricted chalcones. Herein, we report the synthesis of cyclic chalcones and related analogues that incorporate structural motifs of CA4, and evaluation of their cytotoxicity against human cancer cell lines [NCI-H460 (lung), DU-145 (prostate), and SK-OV-3 (ovarian)]. While these molecules proved inactive as inhibitors of tubulin polymerization (IC50 > 20 μM), eight molecules demonstrated good antiproliferative activity (GI50 < 20 μM) against all three cancer cell lines, and compounds 2j and 2l demonstrated sub-micromolar cytotoxicity. To the best of our knowledge these molecules represent the most potent (based on GI50) cyclic chalcones known to date, and are promising lead molecules for continued investigation.
Collapse
Affiliation(s)
- Casey J Maguire
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +1 (254) 710 4117
| | - Graham J Carlson
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +1 (254) 710 4117
| | - Jacob W Ford
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +1 (254) 710 4117
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +1 (254) 710 4117
| | - Ernest Hamel
- Screening Technologies Branch , Developmental Therapeutics Program , Division of Cancer Treatment and Diagnosis , National Cancer Institute , Frederick National Laboratory for Cancer Research , National Institutes of Health , Frederick , MD 21702 , USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +1 (254) 710 4117
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place #97348 , Waco , TX 76798-7348 , USA . ; Tel: +1 (254) 710 4117
| |
Collapse
|
18
|
Niu H, Strecker TE, Gerberich JL, Campbell JW, Saha D, Mondal D, Hamel E, Chaplin DJ, Mason RP, Trawick ML, Pinney KG. Structure Guided Design, Synthesis, and Biological Evaluation of Novel Benzosuberene Analogues as Inhibitors of Tubulin Polymerization. J Med Chem 2019; 62:5594-5615. [PMID: 31059248 DOI: 10.1021/acs.jmedchem.9b00551] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A promising design paradigm for small-molecule inhibitors of tubulin polymerization that bind to the colchicine site draws structural inspiration from the natural products colchicine and combretastatin A-4 (CA4). Our previous studies with benzocycloalkenyl and heteroaromatic ring systems yielded promising inhibitors with dihydronaphthalene and benzosuberene analogues featuring phenolic (KGP03 and KGP18) and aniline (KGP05 and KGP156) congeners emerging as lead agents. These molecules demonstrated dual mechanism of action, functioning both as potent vascular disrupting agents (VDAs) and as highly cytotoxic anticancer agents. A further series of analogues was designed to extend functional group diversity and investigate regioisomeric tolerance. Ten new molecules were effective inhibitors of tubulin polymerization (IC50 < 5 μM) with seven of these exhibiting highly potent activity comparable to CA4, KGP18, and KGP03. For one of the most effective agents, dose-dependent vascular shutdown was demonstrated using dynamic bioluminescence imaging in a human prostate tumor xenograft growing in a rat.
Collapse
Affiliation(s)
- Haichan Niu
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Jeni L Gerberich
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390-9058 , United States
| | - James W Campbell
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390-9058 , United States
| | - Debabrata Saha
- Department of Radiology Oncology, Division of Molecular Radiation Biology , The University of Texas Southwestern Medical Center , 2201 Inwood Road , Dallas , Texas 75390-9187 , United States
| | - Deboprosad Mondal
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis , National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health , Frederick , Maryland 21702 , United States
| | - David J Chaplin
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States.,Mateon Therapeutics, Inc. , 701 Gateway Boulevard, Suite 210 , South San Francisco , California 94080 , United States
| | - Ralph P Mason
- Department of Radiology , The University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard , Dallas , Texas 75390-9058 , United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry , Baylor University , One Bear Place, No. 97348 , Waco , Texas 76798-7348 , United States
| |
Collapse
|
19
|
Mondal D, Niu H, Pinney KG. Efficient Synthetic Methodology for the Construction of Dihydronaphthalene and Benzosuberene Molecular Frameworks. Tetrahedron Lett 2018; 60:397-401. [PMID: 31061544 DOI: 10.1016/j.tetlet.2018.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Benzosuberene analogues (1 and 2) and dihydronaphthalene analogues (3 and 4) function as potent inhibitors of tubulin polymerization, demonstrate pronounced cytotoxicity (low nM to pM range) against human cancer cell lines, and are promising vascular disrupting agents (VDAs). As such, these compounds represent lead anticancer agents with potential translatability towards the clinic. Methodology previously established by us (and others) facilitated synthetic access to a variety of structural and functional group modifications necessary to explore structure activity relationship considerations directed towards the development of these (and related) molecules as potential therapeutic agents. During the course of these studies it became apparent that the availability of synthetic methodology to facilitate direct conversion of the phenolic-based compounds to their corresponding aniline congeners would be beneficial. Accordingly, modified synthetic routes toward these target phenols (benzosuberene 1 and dihydronaphthalene 3) were developed in order to improve scalability and overall yield [45-57% (1) and 32% (3)]. Moreover, benzosuberene-based phenolic analogue 1 and separately dihydronaphthalene-based phenolic analogue 3 were successfully converted into their corresponding aniline analogues 2 and 4 in good yield (>60% over three steps) using a palladium catalyzed amination reaction.
Collapse
Affiliation(s)
- Deboprosad Mondal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place # 97348, Waco, Texas 76798-7438, United States
| | - Haichan Niu
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place # 97348, Waco, Texas 76798-7438, United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place # 97348, Waco, Texas 76798-7438, United States
| |
Collapse
|