1
|
Viktorova VV, Obydennov DL, Kovaleva KS, Yarovaya OI, Khasanov SA, Bormotov NI, Esaulkova IL, Serova OA, Zarubaev VV, Shishkina LN, Salakhutdinov NF, Sosnovskikh VY. The Reaction of Fenchone and Camphor Hydrazones with 5-Acyl-4-Pyrones as a Method for the Synthesis of New Polycarbonyl Conjugates: Tautomeric Equilibrium and Antiviral Activity. Chem Biodivers 2025; 22:e202401461. [PMID: 39233581 DOI: 10.1002/cbdv.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Selective synthesis of polycarbonyl conjugates of (+)-fenchone and (+)-camphor was carried out (44-91 % yields) via the ring-opening transformation of 5-acyl-4-pyrones with hydrazones of the corresponding monoterpenoids. A strong influence of the hydrazone fragment on the observed tautomeric equilibrium of the tricarbonyl system was shown. Although the major tautomer of the conjugates is the acyclic polycarbonyl form, the camphor-based conjugates undergo new type of ring-chain tautomerism, diketoenaminone-dihydropyridone equilibrium, and predominantly exist in the cyclic dihydropyridone form in DMSO-d6. The polyketones can undergo intramolecular cyclization to form N-amino-4-pyridones in high selectivity. In vitro screening for activity against the influenza virus H1 N1 and vaccinia virus was estimated for the obtained conjugates. The (+)-fenchone derivatives demonstrated the higher activity against vaccinia virus than camphor derivatives. The conjugate, which was prepared from diethyl isochelidonate and hydrazone (+)-fenchone, showed the highest activity against vaccinia virus (SI=17).
Collapse
Affiliation(s)
- Viktoria V Viktorova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000, Ekaterinburg, Russian Federation
| | - Dmitrii L Obydennov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000, Ekaterinburg, Russian Federation
| | - Kseniya S Kovaleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 630090, Novosibirsk, Russian Federation
| | - Olga I Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 630090, Novosibirsk, Russian Federation
| | | | - Nikolay I Bormotov
- State Research Center of Virology and Biotechnology "VECTOR", Novosibirsk Region, 6300559, Koltsovo, Russian Federation
| | - Iana L Esaulkova
- St. Petersburg Pasteur Institute, 197001, St. Petersburg, Russian Federation
| | - Olga A Serova
- State Research Center of Virology and Biotechnology "VECTOR", Novosibirsk Region, 6300559, Koltsovo, Russian Federation
| | - Vladimir V Zarubaev
- St. Petersburg Pasteur Institute, 197001, St. Petersburg, Russian Federation
| | - Larisa N Shishkina
- State Research Center of Virology and Biotechnology "VECTOR", Novosibirsk Region, 6300559, Koltsovo, Russian Federation
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 630090, Novosibirsk, Russian Federation
| | - Vyacheslav Y Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000, Ekaterinburg, Russian Federation
| |
Collapse
|
2
|
Oreshko VV, Kovaleva KS, Mordvinova ED, Yarovaya OI, Gatilov YV, Shcherbakov DN, Bormotov NI, Serova OA, Shishkina LN, Salakhutdinov NF. Synthesis and Antiviral Properties of Camphor-Derived Iminothiazolidine-4-Ones and 2,3-Dihydrothiazoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154761. [PMID: 35897931 PMCID: PMC9331314 DOI: 10.3390/molecules27154761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
A set of heterocyclic products was synthesized from natural (+)-camphor and semi-synthetic (−)-camphor. Then, 2-Imino-4-thiazolidinones and 2,3-dihydrothiazoles were obtained using a three-step procedure. For the synthesized compounds, their antiviral activity against the vaccinia virus and Marburg virus was studied. New promising agents active against both viruses were found among the tested compounds.
Collapse
Affiliation(s)
- Vladislav V. Oreshko
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova St., 1, 630090 Novosibirsk, Russia;
| | - Kseniya S. Kovaleva
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
| | - Ekaterina D. Mordvinova
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova St., 1, 630090 Novosibirsk, Russia;
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova St., 1, 630090 Novosibirsk, Russia;
- Correspondence: ; Tel.: +7-383-330-88-70
| | - Yuri V. Gatilov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Nikolai I. Bormotov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Olga A. Serova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Larisa N. Shishkina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
| |
Collapse
|
3
|
Camphor: Synthesis, reactions and uses as a potential moiety in the development of complexes and organocatalysts. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Achi PA, Coulibali S, Molou KYG, Coulibaly S, Kouassi S, Sissouma D, Ouattara L, Ané A. Stereochemical design and conformation determinations of new benzimidazole-N-acylhydrazone derivatives. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2084417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Patrick-Armand Achi
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Siomenan Coulibali
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Kouassi Yves Guillaume Molou
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Souleymane Coulibaly
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Signo Kouassi
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Drissa Sissouma
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Lassiné Ouattara
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Adjou Ané
- Laboratoire de Constitution et Réaction de la Matière, UFR Sciences des Structures de la Matière et Technologie, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire
| |
Collapse
|
5
|
Sokolova A, Kovaleva KS, Kuranov SO, Bormotov NI, Borisevich SS, Yarovaya OI, Zhukovets A, Serova OA, Nawrozkij MB, Vernigora AA, Davidenko AV, Khamitov EM, Peshkov RY, Shishkina LN, Maksuytov RA, Salakhutdinov NF. Design, synthesis and biological evaluation of novel (+)-сamphor and (-)-fenchone based derivatives as potent orthopoxviruses inhibitors. ChemMedChem 2022; 17:e202100771. [PMID: 35388614 DOI: 10.1002/cmdc.202100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/31/2022] [Indexed: 11/10/2022]
Abstract
In this work, a library of (+)-camphor and (-)-fenchone based N-acylhydrazones, amides, and esters, including para-substituted aromatic/hetaromatic/cyclohexane ring was synthesized, with potent orthopoxvirus inhibitors identified among them. Investigations of the structure-activity relationship revealed the significance of the substituent at the para-position of the aromatic ring. Also, the nature of the linker between a hydrophobic moiety and aromatic ring was clarified. Derivatives with p-Cl, p-Br, p-CF3, and p-NO2 substituted aromatic ring and derivatives with cyclohexane ring showed the highest antiviral activity against vaccinia virus, cowpox, and ectromelia virus. The hydrazone and the amide group were more favourable as a linker for antiviral activity than the ester group. Compounds 3b and 7e with high antiviral activity were examined using the time-of-addition assay and molecular docking study. The results revealed the tested compounds to inhibit the late processes of the orthopoxvirus replication cycle and the p37 viral protein to be a possible biological target.
Collapse
Affiliation(s)
- Anastasiya Sokolova
- Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, Medicinal Chemistry, 9, Lavrent'ev avenue, 630090, Novosibirsk, RUSSIAN FEDERATION
| | - Kseniya S Kovaleva
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, SB RAS, RUSSIAN FEDERATION
| | - Sergey O Kuranov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, SB RAS, SAINT KITTS AND NEVIS
| | - Nikolay I Bormotov
- VECTOR: State Research Center of Virology and Biotechnology, Prevention and Tretment of Highly Dangerous Infection, RUSSIAN FEDERATION
| | - Sophia S Borisevich
- Ufa Institute of Chemistry RAS: FGBUN Ufimskij Institut himii Rossijskoj akademii nauk, RAS, RUSSIAN FEDERATION
| | - Olga I Yarovaya
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, SB RAS, RUSSIAN FEDERATION
| | - Anastasiya Zhukovets
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, SB RAS, RUSSIAN FEDERATION
| | - Olga A Serova
- VECTOR: State Research Center of Virology and Biotechnology, Prevention and Treatment of Highly Dengerous Infection, RUSSIAN FEDERATION
| | - Maxim B Nawrozkij
- Volgograd State Technical University: Volgogradskij gosudarstvennyj tehniceskij universitet, Chemistry, RUSSIAN FEDERATION
| | - Andrey A Vernigora
- Volgograd State Technical University: Volgogradskij gosudarstvennyj tehniceskij universitet, Chemistry, RUSSIAN FEDERATION
| | - Andrey V Davidenko
- Volgograd State Technical University: Volgogradskij gosudarstvennyj tehniceskij universitet, Chemistry, RUSSIAN FEDERATION
| | - Eduard M Khamitov
- Ufa Institute of Chemistry RAS: FGBUN Ufimskij Institut himii Rossijskoj akademii nauk, Chemistry, RUSSIAN FEDERATION
| | - Roman Yu Peshkov
- Novosibirsk National Research State University: Novosibirskij gosudarstvennyj universitet, Natural Science, RUSSIAN FEDERATION
| | - Larisa N Shishkina
- VECTOR: State Research Center of Virology and Biotechnology, Prevention and Tretment of Highly Dangerous Infections, RUSSIAN FEDERATION
| | - Rinat A Maksuytov
- VECTOR: State Research Center of Virology and Biotechnology, Rospotrebnadzor, RUSSIAN FEDERATION
| | - Nariman F Salakhutdinov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, Medicinal Chemistry, RUSSIAN FEDERATION
| |
Collapse
|
6
|
Abo-Bakr AM, Hassan EA, Mahdy AHS, Zayed SE. Synthetic and biological studies on some new camphor thiazolidinones. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02228-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Munir R, Javid N, Zia-ur-Rehman M, Zaheer M, Huma R, Roohi A, Athar MM. Synthesis of Novel N-Acylhydrazones and Their C-N/N-N Bond Conformational Characterization by NMR Spectroscopy. Molecules 2021; 26:molecules26164908. [PMID: 34443493 PMCID: PMC8399016 DOI: 10.3390/molecules26164908] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
In this article, a synthesis of N’-(benzylidene)-2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazides and their structural interpretation by NMR experiments is described in an attempt to explain the duplication of some peaks in their 1H- and 13C-NMR spectra. Twenty new 6-methyl-1H-pyrazolo[3,4-b]quinoline substituted N-acylhydrazones 6(a–t) were synthesized from 2-chloro-6-methylquinoline-3-carbaldehyde (1) in four steps. 2-Chloro-6-methylquinoline-3-carbaldehyde (1) afforded 6-methyl-1H-pyrazolo[3,4-b]quinoline (2), which upon N-alkylation yielded 2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetate (3). The hydrazinolysis of 3 followed by the condensation of resulting 2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazide (4) with aromatic aldehydes gave N-acylhydrazones 6(a–t). Structures of the synthesized compounds were established by readily available techniques such as FT-IR, NMR and mass spectral studies. The stereochemical behavior of 6(a–t) was studied in dimethyl sulfoxide-d6 solvent by means of 1H NMR and 13C NMR techniques at room temperature. NMR spectra revealed the presence of N’-(benzylidene)-2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazides as a mixture of two conformers, i.e., E(C=N)(N-N) synperiplanar and E(C=N)(N-N)antiperiplanar at room temperature in DMSO-d6. The ratio of both conformers was also calculated and E(C=N) (N-N) syn-periplanar conformer was established to be in higher percentage in equilibrium with the E(C=N) (N-N)anti-periplanar form.
Collapse
Affiliation(s)
- Rubina Munir
- Institute of Chemistry, University of the Punjab, Lahore 54590, Pakistan;
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (R.H.); (A.R.)
- Correspondence: or (R.M.); (M.Z.R.)
| | - Noman Javid
- Department of Chemistry (C-Block), Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan;
| | - Muhammad Zia-ur-Rehman
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan;
- Correspondence: or (R.M.); (M.Z.R.)
| | - Muhammad Zaheer
- Applied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan;
| | - Rahila Huma
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (R.H.); (A.R.)
| | - Ayesha Roohi
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (R.H.); (A.R.)
| | | |
Collapse
|
8
|
Yarovaya OI, Kovaleva KS, Zaykovskaya AA, Yashina LN, Scherbakova NS, Scherbakov DN, Borisevich SS, Zubkov FI, Antonova AS, Peshkov RY, Eltsov IV, Pyankov OV, Maksyutov RA, Salakhutdinov NF. New class of hantaan virus inhibitors based on conjugation of the isoindole fragment to (+)-camphor or (-)-fenchone hydrazonesv. Bioorg Med Chem Lett 2021; 40:127926. [PMID: 33705902 DOI: 10.1016/j.bmcl.2021.127926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 11/20/2022]
Abstract
This work presents the design and synthesis of camphor, fenchone, and norcamphor N-acylhydrazone derivatives as a new class of inhibitors of the Hantaan virus, which causes haemorrhagic fever with renal syndrome (HFRS). A cytopathic model was developed for testing chemotherapeutics against the Hantaan virus, strain 76-118. In addition, a study of the antiviral activity was carried out using a pseudoviral system. It was found that the hit compound possesses significant activity (IC50 = 7.6 ± 2 µM) along with low toxicity (CC50 > 1000 µM). Using molecular docking procedures, the binding with Hantavirus nucleoprotein was evaluated and the correlation between the structure of the synthesised compounds and the antiviral activity was established.
Collapse
Affiliation(s)
- Olga I Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent'ev av., 9, Novosibirsk 630090, Russia
| | - Kseniya S Kovaleva
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent'ev av., 9, Novosibirsk 630090, Russia
| | - Anna A Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Liudmila N Yashina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Nadezda S Scherbakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Dmitry N Scherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Sophia S Borisevich
- Ufa Institute of Chemistry, Ufa Federal Research Center, RAS, Octyabrya pr., 71, Ufa 450054, Russia
| | - Fedor I Zubkov
- Organic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Alexandra S Antonova
- Organic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Roman Yu Peshkov
- Novosibirsk State University, Pirogova St. 1, Novosibirsk 630090, Russia
| | - Ilia V Eltsov
- Novosibirsk State University, Pirogova St. 1, Novosibirsk 630090, Russia
| | - Oleg V Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Rinat A Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent'ev av., 9, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
|
10
|
Sokolova AS, Putilova VP, Yarovaya OI, Zybkina AV, Mordvinova ED, Zaykovskaya AV, Shcherbakov DN, Orshanskaya IR, Sinegubova EO, Esaulkova IL, Borisevich SS, Bormotov NI, Shishkina LN, Zarubaev VV, Pyankov OV, Maksyutov RA, Salakhutdinov NF. Synthesis and Antiviral Activity of Camphene Derivatives against Different Types of Viruses. Molecules 2021; 26:2235. [PMID: 33924393 PMCID: PMC8070564 DOI: 10.3390/molecules26082235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/25/2022] Open
Abstract
To date, the 'one bug-one drug' approach to antiviral drug development cannot effectively respond to the constant threat posed by an increasing diversity of viruses causing outbreaks of viral infections that turn out to be pathogenic for humans. Evidently, there is an urgent need for new strategies to develop efficient antiviral agents with broad-spectrum activities. In this paper, we identified camphene derivatives that showed broad antiviral activities in vitro against a panel of enveloped pathogenic viruses, including influenza virus A/PR/8/34 (H1N1), Ebola virus (EBOV), and the Hantaan virus. The lead-compound 2a, with pyrrolidine cycle in its structure, displayed antiviral activity against influenza virus (IC50 = 45.3 µM), Ebola pseudotype viruses (IC50 = 0.12 µM), and authentic EBOV (IC50 = 18.3 µM), as well as against pseudoviruses with Hantaan virus Gn-Gc glycoprotein (IC50 = 9.1 µM). The results of antiviral activity studies using pseudotype viruses and molecular modeling suggest that surface proteins of the viruses required for the fusion process between viral and cellular membranes are the likely target of compound 2a. The key structural fragments responsible for efficient binding are the bicyclic natural framework and the nitrogen atom. These data encourage us to conduct further investigations using bicyclic monoterpenoids as a scaffold for the rational design of membrane-fusion targeting inhibitors.
Collapse
Affiliation(s)
- Anastasiya S. Sokolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent’ev av., 9, 630090 Novosibirsk, Russia; (V.P.P.); (O.I.Y.); (E.D.M.); (N.F.S.)
| | - Valentina P. Putilova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent’ev av., 9, 630090 Novosibirsk, Russia; (V.P.P.); (O.I.Y.); (E.D.M.); (N.F.S.)
| | - Olga I. Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent’ev av., 9, 630090 Novosibirsk, Russia; (V.P.P.); (O.I.Y.); (E.D.M.); (N.F.S.)
| | - Anastasiya V. Zybkina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Ekaterina D. Mordvinova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent’ev av., 9, 630090 Novosibirsk, Russia; (V.P.P.); (O.I.Y.); (E.D.M.); (N.F.S.)
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Iana R. Orshanskaya
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira str., 197101 St. Petersburg, Russia; (I.R.O.); (E.O.S.); (I.L.E.); (V.V.Z.)
| | - Ekaterina O. Sinegubova
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira str., 197101 St. Petersburg, Russia; (I.R.O.); (E.O.S.); (I.L.E.); (V.V.Z.)
| | - Iana L. Esaulkova
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira str., 197101 St. Petersburg, Russia; (I.R.O.); (E.O.S.); (I.L.E.); (V.V.Z.)
| | - Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 71 Pr. Oktyabrya, 450078 Ufa, Russia;
| | - Nikolay I. Bormotov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Larisa N. Shishkina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Vladimir V. Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira str., 197101 St. Petersburg, Russia; (I.R.O.); (E.O.S.); (I.L.E.); (V.V.Z.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Rinat A. Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent’ev av., 9, 630090 Novosibirsk, Russia; (V.P.P.); (O.I.Y.); (E.D.M.); (N.F.S.)
| |
Collapse
|
11
|
Yarovaya OI, Salakhutdinov NF. Mono- and sesquiterpenes as a starting platform for the development of antiviral drugs. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4969] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Sokolova AS, Kovaleva KS, Yarovaya OI, Bormotov NI, Shishkina LN, Serova OA, Sergeev AA, Agafonov AP, Maksuytov RA, Salakhutdinov NF. (+)-Camphor and (-)-borneol derivatives as potential anti-orthopoxvirus agents. Arch Pharm (Weinheim) 2021; 354:e2100038. [PMID: 33605479 DOI: 10.1002/ardp.202100038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/11/2022]
Abstract
Although the World Health Organisation had announced that smallpox was eradicated over 40 years ago, the disease and other related pathogenic poxviruses such as monkeypox remain potential bioterrorist weapons and could also re-emerge as natural infections. We have previously reported (+)-camphor and (-)-borneol derivatives with an antiviral activity against the vaccinia virus. This virus is similar to the variola virus (VARV), the causative agent of smallpox, but can be studied at BSL-2 facilities. In the present study, we evaluated the antiviral activity of the most potent compounds against VARV, cowpox virus, and ectromelia virus (ECTV). Among the compounds tested, 4-bromo-N'-((1R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)benzohydrazide 18 is the most effective compound against various orthopoxviruses, including VARV, with an EC50 value of 13.9 μM and a selectivity index of 206. Also, (+)-camphor thiosemicarbazone 9 was found to be active against VARV and ECTV.
Collapse
Affiliation(s)
- Anastasiya S Sokolova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Kseniya S Kovaleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Olga I Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Nikolay I Bormotov
- State Research Centre of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk, Russian Federation
| | - Larisa N Shishkina
- State Research Centre of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk, Russian Federation
| | - Olga A Serova
- State Research Centre of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk, Russian Federation
| | - Alexander A Sergeev
- State Research Centre of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk, Russian Federation
| | - Alexander P Agafonov
- State Research Centre of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk, Russian Federation
| | - Rinat A Maksuytov
- State Research Centre of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk, Russian Federation
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| |
Collapse
|
13
|
Suslov EV, Mozhaytsev ES, Korchagina DV, Bormotov NI, Yarovaya OI, Volcho KP, Serova OA, Agafonov AP, Maksyutov RA, Shishkina LN, Salakhutdinov NF. New chemical agents based on adamantane-monoterpene conjugates against orthopoxvirus infections. RSC Med Chem 2020; 11:1185-1195. [PMID: 33479623 PMCID: PMC7651861 DOI: 10.1039/d0md00108b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/30/2020] [Indexed: 11/21/2022] Open
Abstract
Currently, the spectrum of agents against orthopoxviruses, in particular smallpox, is very narrow. Despite the fact that smallpox is well controlled, there is, for many reasons, a real threat of epidemics associated with this or a similar virus. In order to search for new low molecular weight orthopoxvirus inhibitors, a series of amides combining adamantane and monoterpene moieties were synthesized using 1- and 2-adamantanecarboxylic acids as well as myrtenic, citronellic and camphorsulfonic acids as acid components. The produced compounds exhibited high activity against the vaccinia virus (an enveloped virus belonging to the poxvirus family), which was combined with low cytotoxicity. Some compounds had a selectivity index higher than that of the reference drug cidofovir; the highest SI = 1123 was exhibited by 1-adamantanecarboxylic acid amide containing the (-)-10-amino-2-pinene moiety. The produced compounds demonstrated inhibitory activity against other orthopoxviruses: cowpox virus (SI = 30-406) and ectromelia virus (mousepox virus, SI = 39-707).
Collapse
Affiliation(s)
- Evgenii V Suslov
- Novosibirsk Institute of Organic Chemistry , Siberian Branch of the Russian Academy of Sciences , Lavrentjev Avenue 9 , 630090 Novosibirsk , Russia .
| | - Evgenii S Mozhaytsev
- Novosibirsk Institute of Organic Chemistry , Siberian Branch of the Russian Academy of Sciences , Lavrentjev Avenue 9 , 630090 Novosibirsk , Russia .
| | - Dina V Korchagina
- Novosibirsk Institute of Organic Chemistry , Siberian Branch of the Russian Academy of Sciences , Lavrentjev Avenue 9 , 630090 Novosibirsk , Russia .
| | - Nikolay I Bormotov
- Department of Prevention and Treatment of Especially Dangerous Infections , State Research Center of Virology and Biotechnology VECTOR , Koltsovo , Novosibirsk Region , 630559 , Russian Federation
| | - Olga I Yarovaya
- Novosibirsk Institute of Organic Chemistry , Siberian Branch of the Russian Academy of Sciences , Lavrentjev Avenue 9 , 630090 Novosibirsk , Russia .
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia
| | - Konstantin P Volcho
- Novosibirsk Institute of Organic Chemistry , Siberian Branch of the Russian Academy of Sciences , Lavrentjev Avenue 9 , 630090 Novosibirsk , Russia .
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia
| | - Olga A Serova
- Department of Prevention and Treatment of Especially Dangerous Infections , State Research Center of Virology and Biotechnology VECTOR , Koltsovo , Novosibirsk Region , 630559 , Russian Federation
| | - Alexander P Agafonov
- Department of Prevention and Treatment of Especially Dangerous Infections , State Research Center of Virology and Biotechnology VECTOR , Koltsovo , Novosibirsk Region , 630559 , Russian Federation
| | - Rinat A Maksyutov
- Department of Prevention and Treatment of Especially Dangerous Infections , State Research Center of Virology and Biotechnology VECTOR , Koltsovo , Novosibirsk Region , 630559 , Russian Federation
| | - Larisa N Shishkina
- Department of Prevention and Treatment of Especially Dangerous Infections , State Research Center of Virology and Biotechnology VECTOR , Koltsovo , Novosibirsk Region , 630559 , Russian Federation
| | - Nariman F Salakhutdinov
- Novosibirsk Institute of Organic Chemistry , Siberian Branch of the Russian Academy of Sciences , Lavrentjev Avenue 9 , 630090 Novosibirsk , Russia .
- Novosibirsk State University , Pirogova St. 2 , 630090 Novosibirsk , Russia
| |
Collapse
|
14
|
Zielińska-Błajet M, Feder-Kubis J. Monoterpenes and Their Derivatives-Recent Development in Biological and Medical Applications. Int J Mol Sci 2020; 21:E7078. [PMID: 32992914 PMCID: PMC7582973 DOI: 10.3390/ijms21197078] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Monoterpenes, comprising hydrocarbons, are the largest class of plant secondary metabolites and are commonly found in essential oils. Monoterpenes and their derivatives are key ingredients in the design and production of new biologically active compounds. This review focuses on selected aliphatic, monocyclic, and bicyclic monoterpenes like geraniol, thymol, myrtenal, pinene, camphor, borneol, and their modified structures. The compounds in question play a pivotal role in biological and medical applications. The review also discusses anti-inflammatory, antimicrobial, anticonvulsant, analgesic, antiviral, anticancer, antituberculosis, and antioxidant biological activities exhibited by monoterpenes and their derivatives. Particular attention is paid to the link between biological activity and the effect of structural modification of monoterpenes and monoterpenoids, as well as the introduction of various functionalized moieties into the molecules in question.
Collapse
Affiliation(s)
- Mariola Zielińska-Błajet
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joanna Feder-Kubis
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
15
|
Marra RKF, Kümmerle AE, Guedes GP, Barros CDS, Gomes RSP, Cirne-Santos CC, Paixão ICNP, Neves AP. Quinolone-N-acylhydrazone hybrids as potent Zika and Chikungunya virus inhibitors. Bioorg Med Chem Lett 2019; 30:126881. [PMID: 31843348 DOI: 10.1016/j.bmcl.2019.126881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/04/2019] [Accepted: 11/30/2019] [Indexed: 12/20/2022]
Abstract
This work reports the synthesis of quinolone-N-acylhydrazone hybrids, namely 6-R-N'-(2-hydxoxybenzylidene)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide (R = H: 5a, F: 5b, Cl: 5c and Br: 5d), which exhibited excellent activity against arbovirus Zika (ZIKV) and Chikungunya (CHIKV). In vitro screening towards ZIKV and CHIKV inhibition revealed that all substances have significant antiviral activity, most of them being more potent than standard Ribavirin (5a-d: EC50 = 0.75-0.81 μM, Ribavirin: EC50 = 3.95 μM for ZIKV and 5a-d: 1.16-2.85 μM, Ribavirin: EC50 = 2.42 μM for CHIKV). The quinolone-N-acylhydrazone hybrids were non-toxic against Vero cells, in which compounds 5c and 5d showed the best selectivities (SI = 1410 and 630 against ZIKV and CHIKV, respectively). Antiviral activity was identified by inhibition of viral RNA production in a dose-dependent manner. In the evaluation of the time of addition of the compounds, we observed that 5b and 5c remain with strong effect even in the addition for 12 h after infection. The above results indicate that quinolone-N-acylhydrazones represent a new and promising class to be further investigated as anti-ZIKV and anti-CHIKV agents.
Collapse
Affiliation(s)
- Roberta K F Marra
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000, Brazil
| | - Arthur E Kümmerle
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000, Brazil
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24020-141, Brazil
| | - Caroline de S Barros
- Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ 24020-141, Brazil
| | - Rafaela S P Gomes
- Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ 24020-141, Brazil
| | | | | | - Amanda P Neves
- Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ 23897-000, Brazil.
| |
Collapse
|