1
|
Sándor B, Grenács Á, Nagy L, Hollóczki O, Várnagy K. Complex Formation and Hydrolytic Processes of Protected Peptides Containing the -SXH- Motif in the Presence of Nickel(II) Ion. Chembiochem 2024; 25:e202400475. [PMID: 39001608 DOI: 10.1002/cbic.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Indexed: 10/17/2024]
Abstract
Interactions between metal ions and proteins are considered reversible, such as the coordination of a metal ion to a protein or enzyme, but irreversible processes like the oxidative reactions, aggregation or hydrolytic processes may occur. In the presence of Ni(II)-ions selective hydrolysis of the peptides containing the -SXH- or -TXH- motif was observed. Since the side chain of histidine serves as the metal ion binding site for many native proteins, and very often histidine is present in a -SXH- or -TXH- sequence, to study the complex formation and hydrolytic processes in presence of nickel(II) ion four peptides were synthesised: Ac-SKHM-NH2, A3SSH-NH2, A4SSH-NH2, AAAϵKSH-NH2. The Ni(II)-induced hydrolysis of Ac-SKHM-NH2 peptide occurs rapidly in alkaline medium already at room temperature. In two peptides containing -SSH- sequence on the C-termini, the N-terminal part is the major binding site for the nickel(II) ion, but the formation of dinuclear complexes was also observed. In the [Ni2LH-6]2- complex of hexapeptide, the coordination sphere of the metal ions is saturated with deprotonated Ser-O-, which does not result in hydrolysis of the peptide. For A4SSH-NH2, both Ni(II) ions fulfill the conditions for hydrolysis, which was confirmed by HPLC analyses at pH ≈8.2 and 25 °C.
Collapse
Affiliation(s)
- Balázs Sándor
- Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary
| | - Ágnes Grenács
- Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary
| | - Lajos Nagy
- Department of Applied Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1., Hungary
| | - Oldamur Hollóczki
- Department of Physical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1., Hungary
| | - Katalin Várnagy
- Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Egyetem tér 1, Hungary
| |
Collapse
|
2
|
Hajdu B, Hunyadi-Gulyás É, Kato K, Kawaguchi A, Nagata K, Gyurcsik B. Zinc binding of a Cys2His2-type zinc finger protein is enhanced by the interaction with DNA. J Biol Inorg Chem 2023; 28:301-315. [PMID: 36820987 PMCID: PMC10036435 DOI: 10.1007/s00775-023-01988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/10/2023] [Indexed: 02/24/2023]
Abstract
Zinc finger proteins specifically recognize DNA sequences and, therefore, play a crucial role in living organisms. In this study the Zn(II)-, and DNA-binding of 1MEY#, an artificial zinc finger protein consisting of three finger units was characterized by multiple methods. Fluorimetric, circular dichroism and isothermal calorimetric titrations were applied to determine the accurate stability constant of a zinc finger protein. Assuming that all three zinc finger subunits behave identically, the obtained thermodynamic data for the Zn(II) binding were ΔHbinding site = - (23.5 - 28.0) kcal/mol (depending on the applied protonation state of the cysteines) and logβ'pH 7.4 = 12.2 ± 0.1, being similar to those of the CP1 consensus zinc finger peptide. The specific DNA binding of the protein can be characterized by logβ'pH 7.4 = 8.20 ± 0.08, which is comparable to the affinity of the natural zinc finger proteins (Sp1, WT1, TFIIIA) toward DNA. This value is ~ 1.9 logβ' unit higher than those determined for semi- or nonspecific DNA binding. Competitive circular dichroism and electrophoretic mobility shift measurements revealed that the conditional stability constant characteristic for Zn(II) binding of 1MEY# protein increased by 3.4 orders of magnitude in the presence of its target DNA sequence.
Collapse
Affiliation(s)
- Bálint Hajdu
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm Tér 7, 6720, Szeged, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Kohsuke Kato
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm Tér 7, 6720, Szeged, Hungary.
| |
Collapse
|
3
|
Galuppo C, Gomes de Oliveira Junior A, Dos Santos Oliveira L, de Souza Guarda PH, Buffon R, Abbehausen C. Reactivity of Ni II, Pd II and Pt II complexes bearing phosphine ligands towards Zn II displacement and hydrolysis in Cis 2His 2 and Cis 3His zinc-fingers domains. J Inorg Biochem 2023; 240:112117. [PMID: 36635196 DOI: 10.1016/j.jinorgbio.2022.112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
A systematic study of the effect of phosphine and bis-phosphine ligands in the interaction of NiII, PdII, and PtII complexes with two classes of zinc fingers was performed. The Cys2His2, finger 3 of specific protein-1, and the Cys2HisCys C-terminal zinc finger of nucleocapsid protein 7 of the HIV-1 were used as models of the respective class. In general, phosphine ligands favor the metal binding to the peptide, although the bis-phosphine ligands produce more specific binding than the monodentate. In the case of nickel complexes, the interaction of NiII ions with the sequence SKH, present in Cys2His2, results in hydrolysis, contrasting to the preferred zinc ejection produced by the NiII complexes with chelating phosphines, producing Ni(bis-phosphine) fingers. In the absence of the SKH sequence, zinc ejection is observed with the formation of nickel fingers, with reactivity dependent on the phosphine. On the other hand, Pd(phosphines) produces Pd2 fingers in the case of triphenylphosphine with the phosphine coordinated as intermediate species. The bis-phosphine ligands produce very clean spectra and a stable signal Pd(bis-phosphine)finger. Interestingly, phosphines produce very reactive platinum complexes, which eject zinc and promote peptide hydrolysis. The results reported here are relevant to the understanding of the mechanism of these interactions and how to modulate metallocompounds for zinc finger interference.
Collapse
Affiliation(s)
- Carolina Galuppo
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | | | - Laiane Dos Santos Oliveira
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | | | - Regina Buffon
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Kluska K, Veronesi G, Deniaud A, Hajdu B, Gyurcsik B, Bal W, Krężel A. Structures of Silver Fingers and a Pathway to Their Genotoxicity. Angew Chem Int Ed Engl 2022; 61:e202116621. [PMID: 35041243 PMCID: PMC9303758 DOI: 10.1002/anie.202116621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Recently, we demonstrated that AgI can directly replace ZnII in zinc fingers (ZFs). The cooperative binding of AgI to ZFs leads to a thermodynamically irreversible formation of silver clusters destroying the native ZF structure. Thus, a reported loss of biological function of ZF proteins is a likely consequence of such replacement. Here, we report an X-ray absorption spectroscopy (XAS) study of Agn Sn clusters formed in ZFs to probe their structural features. Selective probing of the local environment around AgI by XAS showed the predominance of digonal AgI coordination to two sulfur donors, coordinated with an average Ag-S distance at 2.41 Å. No Ag-N bonds were present. A mixed AgS2 /AgS3 geometry was found solely in the CCCH AgI -ZF. We also show that cooperative replacement of ZnII ions with the studied Ag2 S2 clusters occurred in a three-ZF transcription factor protein 1MEY#, leading to a dissociation of 1MEY# from the complex with its cognate DNA.
Collapse
Affiliation(s)
- Katarzyna Kluska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Giulia Veronesi
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Bálint Hajdu
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Informatics, University of Szeged, Dóm tér 7, 6720, Szeged, Hungary
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, Faculty of Science and Informatics, University of Szeged, Dóm tér 7, 6720, Szeged, Hungary
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383, Wrocław, Poland
| |
Collapse
|
5
|
Kluska K, Veronesi G, Deniaud A, Hajdu B, Gyurcsik B, Bal W, Krezel A. Structures of Silver Fingers and a Pathway to Their Genotoxicity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katarzyna Kluska
- University of Wroclaw: Uniwersytet Wroclawski Faculty of Biotechnology, Department of Chemical Biology 50-383 Wrocław POLAND
| | - Giulia Veronesi
- Université Grenoble Alpes: Universite Grenoble Alpes Laboratoire de Chimie et Biologie des Metaux F-38000 Grenoble FRANCE
| | - Aurelien Deniaud
- Université de Grenoble I: Universite Grenoble Alpes Laboratoire de Chimie at Biologie des Metaux F-38000 Grenoble FRANCE
| | - Balint Hajdu
- University of Szeged: Szegedi Tudomanyegyetem Department of Inorganic Analytical Chemistry H-6720 Szeged HUNGARY
| | - Bela Gyurcsik
- University of Szeged: Szegedi Tudomanyegyetem Depertment of Inorganic Analytical Chemistry H-6720 Szeged HUNGARY
| | - Wojciech Bal
- Polish Academy of Sciences: Polska Akademia Nauk Institute of Biochemistry and Biophysics 02-106 Warsaw POLAND
| | - Artur Krezel
- University of Wroclaw Department of Chemical Biology, Faculty of Biotechnology F. Joliot-Curie 14A 50-383 Wrocław POLAND
| |
Collapse
|
6
|
Wezynfeld NE, Frączyk T, Bonna A, Bal W. Peptide bond cleavage in the presence of Ni-containing particles. Metallomics 2020; 12:649-653. [PMID: 32393924 DOI: 10.1039/d0mt00070a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiO nanoparticles and non-stoichiometric black NiO were shown to be effective sources of Ni2+ ions causing sequence-selective peptide bond hydrolysis. NiO nanoparticles were as effective in this reaction as their molar equivalent of soluble Ni(ii) salt. These findings highlight the efficacy of delivery of toxic Ni2+ by these environmentally available particles.
Collapse
Affiliation(s)
- Nina Ewa Wezynfeld
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland.
| | | | | | | |
Collapse
|
7
|
Abbehausen C. Zinc finger domains as therapeutic targets for metal-based compounds - an update. Metallomics 2020; 11:15-28. [PMID: 30303505 DOI: 10.1039/c8mt00262b] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Zinc finger proteins are one of the most abundant families of proteins and present a wide range of structures and functions. The structural zinc ion provides the correct conformation to specifically recognize DNA, RNA and protein sequences. Zinc fingers have essential functions in transcription, protein degradation, DNA repair, cell migration, and others. Recently, reports on the extensive participation of zinc fingers in disease have been published. On the other hand, much information remains to be unravelled as many genomes and proteomes are being reported. A variety of zinc fingers have been identified; however, their functions are still under investigation. Because zinc fingers have identified functions in several diseases, they are being increasingly recognized as drug targets. The replacement of Zn(ii) by another metal ion in zinc fingers is one of the most prominent methods of inhibition. From one side, zinc fingers play roles in the toxicity mechanisms of Ni(ii), Hg(ii), Cd(ii) and others. From the other side, gold, platinum, cobalt, and selenium complexes are amongst the compounds being developed as zinc finger inhibitors for therapy. The main challenge in the design of therapeutic zinc finger inhibitors is to achieve selectivity. Recently, the design of novel compounds and elucidation of the mechanisms of zinc substitution have renewed the possibilities of selective zinc finger inhibition by metal complexes. This review aims to update the status of novel strategies to selectively target zinc finger domains by metal complexes.
Collapse
Affiliation(s)
- C Abbehausen
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, CEP 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
8
|
Abd Elhameed HAH, Hajdu B, Jancsó A, Kéri A, Galbács G, Hunyadi-Gulyás É, Gyurcsik B. Modulation of the catalytic activity of a metallonuclease by tagging with oligohistidine. J Inorg Biochem 2020; 206:111013. [PMID: 32088594 DOI: 10.1016/j.jinorgbio.2020.111013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 11/19/2022]
Abstract
Peptide tags are extensively used for affinity purification of proteins. In an optimal case, these tags can be completely removed from the purified protein by a specific protease mediated hydrolysis. However, the interactions of these tags with the target protein may also be utilized for the modulation of the protein function. Here we show that the C-terminal hexahistidine (6 × His) tag can influence the catalytic activity of the nuclease domain of the Colicin E7 metallonuclease (NColE7) used by E. coli to kill competing bacteria under stress conditions. This enzyme non-specifically cleaves the DNA that results in cytotoxicity. We have successfully cloned the genes of NColE7 protein and its R447G mutant into a modified pET-21a DNA vector fusing the affinity tag to the protein upon expression, which would be otherwise not possible in the absence of the gene of the Im7 inhibitory protein. This reflects the inhibitory effect of the 6 × His fusion tag on the nuclease activity, which proved to be a complex process via both coordinative and non-specific steric interactions. The modulatory effect of Zn2+ ion was observed in the catalytic activity experiments. The DNA cleavage ability of the 6 × His tagged enzyme was first enhanced by an increase of metal ion concentration, while high excess of Zn2+ ions caused a lower rate of the DNA cleavage. Modelling of the coordinative effect of the fusion tag by external chelators suggested ternary complex formation instead of removal of the metal ion from the active center.
Collapse
Affiliation(s)
- Heba A H Abd Elhameed
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Bálint Hajdu
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Attila Jancsó
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Albert Kéri
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Gábor Galbács
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| |
Collapse
|
9
|
Abd Elhameed HAH, Hajdu B, Balogh RK, Hermann E, Hunyadi-Gulyás É, Gyurcsik B. Purification of proteins with native terminal sequences using a Ni(II)-cleavable C-terminal hexahistidine affinity tag. Protein Expr Purif 2019; 159:53-59. [PMID: 30905870 DOI: 10.1016/j.pep.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/26/2022]
Abstract
The role of the termini of protein sequences is often perturbed by remnant amino acids after the specific protease cleavage of the affinity tags and/or by the amino acids encoded by the plasmid at/around the restriction enzyme sites used to insert the genes. Here we describe a method for affinity purification of a metallonuclease with its precisely determined native termini. First, the gene encoding the target protein is inserted into a newly designed cloning site, which contains two self-eliminating BsmBI restriction enzyme sites. As a consequence, the engineered DNA code of Ni(II)-sensitive Ser-X-His-X motif is fused to the 3'-end of the inserted gene followed by the gene of an affinity tag for protein purification purpose. The C-terminal segment starting from Ser mentioned above is cleaved off from purified protein by a Ni(II)-induced protease-like action. The success of the purification and cleavage was confirmed by gel electrophoresis and mass spectrometry, while structural integrity of the purified protein was checked by circular dichroism spectroscopy. Our new protein expression DNA construct is an advantageous tool for protein purification, when the complete removal of affinity or other tags, without any remaining amino acid residue is essential. The described procedure can easily be generalized and combined with various affinity tags at the C-terminus for chromatographic applications.
Collapse
Affiliation(s)
- Heba A H Abd Elhameed
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Bálint Hajdu
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Ria K Balogh
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Enikő Hermann
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary.
| |
Collapse
|