1
|
Kowalik M, Masternak J, Olszewski M, Maciejewska N, Kazimierczuk K, Sitkowski J, Dąbrowska AM, Chylewska A, Makowski M. Anticancer Study on Ir III and Rh III Half-Sandwich Complexes with the Bipyridylsulfonamide Ligand. Inorg Chem 2024; 63:1296-1316. [PMID: 38174357 DOI: 10.1021/acs.inorgchem.3c03801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Organometallic half-sandwich complexes [(η5-Cp)IrCl(L)]PF6 (1) and [(η5-Cp)RhCl(L)]PF6 (2) were prepared using pentamethylcyclopentadienyl chloride dimers of iridium(III) or rhodium(III) with the 4-amino-N-(2,2'-bipyridin-5-yl)benzenesulfonamide ligand (L) and ammonium hexafluorophosphate. The crystal structures of L, 1, and 2 were analyzed in detail. The coordination reactions of the ligand with the central ions were confirmed using various spectroscopic techniques. Additionally, the interactions between sulfaligand, Ir(III), and Rh(III) complexes with carbonic anhydrase (CA), human serum albumin (HSA), and CT-DNA were investigated. The iridium(III) complex (1) did not show any antiproliferative properties against four different cancer cell lines, i.e., nonsmall cell lung cancer A549, colon cancer HCT-116, breast cancer MCF7, lymphoblastic leukemia Nalm-6, and a nonmalignant human embryonic kidney cell line HEK293, due to high binding affinity to GSH. The sulfonamide ligand (L) and rhodium(III) complex (2) were further studied. L showed competitive inhibition toward CA, while complexes 1 and 2, uncompetitive. All compounds interacted with HSA, causing a conformational change in the protein's α-helical structure, suggesting the induction of a more open conformation in HSA, reducing its biological activity. Both L and 2 were found to induce cell death through a caspase-dependent pathway. These findings position L and 2 as potential starting compounds for pharmaceutical, therapeutic, or medicinal research.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Mateusz Olszewski
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Natalia Maciejewska
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Katarzyna Kazimierczuk
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jerzy Sitkowski
- Institute of Organic Chemistry, Polish Academic of Science, Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland
| | | | - Agnieszka Chylewska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
2
|
Das B, Gupta S, Mondal A, Kalita KJ, Mallick AI, Gupta P. Tuning the Organelle-Specific Imaging and Photodynamic Therapeutic Efficacy of Theranostic Mono- and Trinuclear Organometallic Iridium(III) Complexes. J Med Chem 2023; 66:15550-15563. [PMID: 37950696 DOI: 10.1021/acs.jmedchem.3c01875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
The organelle-specific localization of mononuclear and trinuclear iridium(III) complexes and their photodynamic behavior within the cells are described herein, emphasizing their structure-activity relationship. Both the IrA2 and IrB2 complexes possess a pair of phenyl-benzothiazole derived from the -CHO moieties of mononuclear organometallic iridium(III) complexes IrA1 and IrB1, which chelates IrCp*Cl (Cp* = 1,2,3,4,5-pentamethylcyclopentadiene) to afford trinuclear complexes IrA3 and IrB3. Insights into the photophysical and electrochemical parameters of the complexes were obtained by a time-dependent density functional theory study. The synthesized complexes IrA2, IrA3, IrB2, and IrB3 were found to be nontoxic to human MCF7 breast carcinoma cells. However, the photoexcitation of complexes using LED light could effectively trigger intracellular reactive oxygen species (ROS) generation, leading to cell death. Furthermore, to check the organelle-specific localization of IrA2 and IrB2, we observed that both complexes could selectively localize in the endoplasmic reticulum. In contrast, trinuclear IrA3 and IrB3 accumulate in the nuclei. The photoexcitation of complexes using LED light could effectively trigger intracellular reactive oxygen species (ROS) generation, leading to cell death.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Subhadeep Gupta
- Department of Biological Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Anushka Mondal
- Department of Biological Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Kalyan Jyoti Kalita
- Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Parna Gupta
- Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
3
|
Synthesis, structural characterization and biological properties of cyclometalated iridium(III) complexes containing 2-methyl-3-{(E)-[(quinolin-2-yl)methylidene]amino}quinazolin-4(3H)-one. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Synthesis, Characterization and Biological Properties of Ruthenium(II) Polypyridyl Complexes Containing 2(1H)-quinolinone-3(1H-imidazo[4,5f][1,10]phenanthrolin-2-yl. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Kavitha N, Thamilarasan V, Sengottuvelan N. Diketonato based ferrocene appended cyclometalated iridium(III) complexes: Anti-microbial and anti-cancer studies. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Dual Emissive Ir(III) Complexes for Photodynamic Therapy and Bioimaging. Pharmaceutics 2021; 13:pharmaceutics13091382. [PMID: 34575458 PMCID: PMC8472790 DOI: 10.3390/pharmaceutics13091382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 01/12/2023] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment still bearing enormous prospects of improvement. Within the toolbox of PDT, developing photosensitizers (PSs) that can specifically reach tumor cells and promote the generation of high concentration of reactive oxygen species (ROS) is a constant research goal. Mitochondria is known as a highly appealing target for PSs, thus being able to assess the biodistribution of the PSs prior to its light activation would be crucial for therapeutic maximization. Bifunctional Ir(III) complexes of the type [Ir(C^N)2(N^N-R)]+, where N^C is either phenylpyridine (ppy) or benzoquinoline (bzq), N^N is 2,2'-dipyridylamine (dpa) and R either anthracene (1 and 3) or acridine (2 and 4), have been developed as novel trackable PSs agents. Activation of the tracking or therapeutic function could be achieved specifically by irradiating the complex with a different light wavelength (405 nm vs. 470 nm respectively). Only complex 4 ([Ir(bzq)2(dpa-acr)]+) clearly showed dual emissive pattern, acridine based emission between 407-450 nm vs. Ir(III) based emission between 521 and 547 nm. The sensitivity of A549 lung cancer cells to 4 evidenced the importance of involving the metal center within the activation process of the PS, reaching values of photosensitivity over 110 times higher than in dark conditions. Moreover, complex 4 promoted apoptotic cell death and possibly the paraptotic pathway, as well as higher ROS generation under irradiation than in dark conditions. Complexes 2-4 accumulated in the mitochondria but species 2 and 4 also localizes in other subcellular organelles.
Collapse
|
7
|
Qin LQ, Liang CJ, Zhou Z, Qin QP, Wei ZZ, Tan MX, Liang H. Mitochondria-localizing curcumin-cryptolepine Zn(II) complexes and their antitumor activity. Bioorg Med Chem 2021; 30:115948. [PMID: 33360578 DOI: 10.1016/j.bmc.2020.115948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 01/08/2023]
Abstract
Many metal complexes are potent candidates as mitochondrial-targeting agents. In this study, four novel Zn(II) complexes, [Zn(BPQA)Cl2] (Zn1), [Zn(BPQA)(Curc)]Cl (Zn2), [Zn(PQA)Cl2] (Zn3), and [Zn(PQA)(Curc)]Cl (Zn4), containing N,N-bis(pyridin-2-ylmethyl)benzofuro[3,2-b]quinolin-11-amine (BPQA), N-(pyridin-2-ylmethyl)benzofuro[3,2-b]quinolin-11-amine (PQA), and curcumin (H-Curc) were synthesized. An MTT assay showed that Zn1-Zn4 had strong anticancer activities against SK-OV-3/DDP and T-24 tumor cells with IC50 values of 0.03-6.19 μM. Importantly, Zn1 and Zn2 displayed low toxicities against normal HL-7702 cells. Mechanism experiments demonstrated that probe Zn2 showed appreciable fluorescence in the red region of the spectrum, and substantial accumulation of Zn2 occurred in the mitochondria after treatment, indicating increases in Ca2+ and reactive oxygen species levels, loss of the mitochondrial membrane potential, and consequent induction of mitochondrial dysfunction at low concentrations. In addition, the probe Zn2 effectively (50.7%) inhibited the growth of T-24 bladder tumor cells in vivo. The probe Zn2 shows potential for use in cancer therapy while retaining the H-Curc as an imaging probe.
Collapse
Affiliation(s)
- Li-Qin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Zhen Zhou
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Zu-Zhuang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
8
|
Yang XH, Zhang Q, Dou SB, Xiao L, Jia XL, Yang RL, Li GN, Niu ZG. Synthesis, properties, DFT calculations, and cytotoxic activity of phosphorescent iridium(III) complexes with heteroatom ancillary ligands. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1802721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xiao-Han Yang
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Qian Zhang
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Shao-Bin Dou
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Lu Xiao
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Xing-Liang Jia
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Rui-Lian Yang
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Gao-Nan Li
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
| | - Zhi-Gang Niu
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| |
Collapse
|
9
|
Bhat SS, S. N, Revankar VK, Lokanath NK, Pinjari RV, Kumbar V, Bhat K. Synthesis, structural characterization and biological properties of cyclometalated iridium( iii) complexes containing [1,2,5]-thiadiazolo-[3,4- f]-[1,10]-phenanthroline. NEW J CHEM 2020. [DOI: 10.1039/d0nj03421e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The iridium(iii) complexes have been structurally characterised and their interaction with DNA, cytotoxicity and cellular uptake have been investigated.
Collapse
Affiliation(s)
- Satish S. Bhat
- Department of Chemistry
- Karnatak University
- Dharwad-580003
- India
| | - Naveen S.
- Department of Physics
- Faculty of Engineering & Technology
- Jain (Deemed-to-be University)
- Bangalore 562112
- India
| | | | - N. K. Lokanath
- Department of Studies in Physics
- University of Mysore
- Manasagangotri, Mysuru 570006
- India
| | - Rahul V. Pinjari
- School of Chemical Science
- Swami Ramanand Teerth
- Marathwada University
- Nanded
- India
| | - Vijay Kumbar
- Maratha Mandal's Central Research Laboratory
- Marathamandal Dental College and Research Centre
- Belgaum
- India
| | - Kishore Bhat
- Maratha Mandal's Central Research Laboratory
- Marathamandal Dental College and Research Centre
- Belgaum
- India
| |
Collapse
|
10
|
Yin XY, Yang ZY, Huang GL, Bian JJ, Wang DQ, Wang Q, Teng MY, Wang ZL, Zhang J. Synthesis and properties of a series of iridium complexes with imidazolo[2,1-b]thiazole derivatives as primary ligands. NEW J CHEM 2019. [DOI: 10.1039/c8nj06295a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ten novel phosphorescent iridium complexes based on imidazolo[2,1-b]thiazole derivatives as primary ligands with luminescent nearly full colors.
Collapse
Affiliation(s)
- Xin-ying Yin
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Zhi-yu Yang
- School of Chemistry & Environment
- Yunnan Minzu University
- Kunming
- China
| | - Guo-li Huang
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Jian-jian Bian
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Deng-qiang Wang
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Qin Wang
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Ming-yu Teng
- Faculty of Chemistry and Chemical Engineering
- Yunnan Normal University
- Kunming 650500
- China
| | - Zheng-liang Wang
- School of Chemistry & Environment
- Yunnan Minzu University
- Kunming
- China
| | - Jie Zhang
- School of Pharmaceutical and Chemical Engineering
- Taizhou University
- Taizhou 318000
- China
| |
Collapse
|