1
|
Han W, Yang J, Jiang B, Wang X, Wang C, Guo L, Sun Y, Liu F, Sun P, Lu G. Conductometric ppb-Level CO Sensors Based on In 2O 3 Nanofibers Co-Modified with Au and Pd Species. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3267. [PMID: 36234395 PMCID: PMC9565841 DOI: 10.3390/nano12193267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Carbon monoxide (CO) is one of the most toxic gases to human life. Therefore, the effective monitoring of it down to ppb level is of great significance. Herein, a series of In2O3 nanofibers modified with Au or Pd species or simultaneous Au and Pd species have been prepared by electrospinning combined with a calcination process. The as-obtained samples are applied for the detection of CO. Gas-sensing investigations indicate that 2 at% Au and 2 at% Pd-co-modified In2O3 nanofibers exhibit the highest response (21.7) to 100 ppm CO at 180 °C, and the response value is ~8.5 times higher than that of pure In2O3 nanofibers. More importantly, the detection limit to CO is about 200 ppb with a response value of 1.23, and is obviously lower than that (6 ppm) of pure In2O3 nanofibers. In addition, the sensor also shows good stability within 19 days. These demonstrate that co-modifying In2O3 nanofibers with suitable amounts of Pd and Au species might be a meaningful strategy for the development of high-performance carbon monoxide gas sensors.
Collapse
Affiliation(s)
- Wenjiang Han
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiaqi Yang
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bin Jiang
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xi Wang
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Chong Wang
- College of Communication Engineering, Jilin University, Changchun 130022, China
| | - Lanlan Guo
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yanfeng Sun
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Singh N, Singh PK, Singh M, Gangopadhyay D, Singh SK, Tandon P. Development of a potential LPG sensor based on a PANI–Co 3O 4 nanocomposite that functions at room temperature. NEW J CHEM 2019. [DOI: 10.1039/c9nj03940f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nanostructured Co3O4 was synthesized by a sol–gel technique while 30% & 40% Co3O4–PANI (polyaniline) nanocomposites were successfully prepared employing an in situ polymerization technique.
Collapse
Affiliation(s)
- Neetu Singh
- Macromolecular Research Laboratory
- Department of Physics
- University of Lucknow
- Lucknow 226007
- India
| | - Prabhat Kumar Singh
- Macromolecular Research Laboratory
- Department of Physics
- University of Lucknow
- Lucknow 226007
- India
| | - Mridula Singh
- Macromolecular Research Laboratory
- Department of Physics
- University of Lucknow
- Lucknow 226007
- India
| | - Debraj Gangopadhyay
- Macromolecular Research Laboratory
- Department of Physics
- University of Lucknow
- Lucknow 226007
- India
| | | | - Poonam Tandon
- Macromolecular Research Laboratory
- Department of Physics
- University of Lucknow
- Lucknow 226007
- India
| |
Collapse
|