1
|
Jennifer G A, Schreckenbach G, Varathan E. Actinide(II) Dioxo Stabilization in the Dipyriamethyrin Ligand Environment: A DFT Study. Inorg Chem 2025; 64:6476-6487. [PMID: 40119800 DOI: 10.1021/acs.inorgchem.4c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
This study aims to understand the properties of mid- to late-actinide dioxo cations, [AnII(η1-3O2)]2+ (An = Am-Lr) in their +II oxidation state and their interaction with the dipyriamethyrin ligand. The DFT calculations of the total binding energies of the complex isomers with 7 and 8 coordination to the actinide point to the latter as relatively more stable. In the complexes, Am, Cm, and Lr shift to a more stable +III oxidation state, Bk to Es were assigned oxidation states between +II and +III, while Fm to No retained their formal +II oxidation state. The triplet dioxygen transitioned to a doublet superoxide upon complexation, as observed from Mayer bond orders (∼1.5 for O*-O bonds) and spin density (∼0.5 on O). Based on bond lengths and bond orders, the An-N bonds show weak covalency, while the An-O* and An···O bonds exhibited stronger covalent interactions. The calculated thermodynamic parameters indicate the formation of [An(O2)L] to be spontaneous and exothermic, with [Cm(O2)L] and [Lr(O2)L] being the most thermodynamically and energetically feasible. Energy decomposition analysis quantifies more covalent character in the former than the latter. Conversely, [No(O2)L] is the least stable due to the reduced availability of 6d and 7s orbitals for bonding.
Collapse
Affiliation(s)
- Abigail Jennifer G
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu India
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Elumalai Varathan
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
2
|
Li WL, Burkhardt J. AnB 8-: borozene complexes with monovalent actinide. Phys Chem Chem Phys 2024; 26:16091-16095. [PMID: 38780310 DOI: 10.1039/d4cp01646g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In light of recently reported monovalent lanthanide in borozene complexes LnB8- (Ln = La, Pr, Tb, Tm, Yb), the corresponding AnB8- (An = Ac, Pa, Bk, Md, No) actinide species within the same group were theoretically investigated in respect of oxidation state, stability, electronic structure and chemical bonding pattern. Our investigations reveal the feasibility of actinides, especially for the late actinide borozene compounds (BkB8-, MdB8-, NoB8-) adopting a monovalent oxidation state of +I, a phenomenon fine-tuned by the doubly aromatic borozene B82-. Early actinides (AcB8-, PaB8-) however exhibit a tendency towards higher trivalent oxidation states.
Collapse
Affiliation(s)
- Wan-Lu Li
- Department of NanoEngineering, University of California San Diego La Jolla, CA 92093, USA.
- Program of Materials Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan Burkhardt
- Department of NanoEngineering, University of California San Diego La Jolla, CA 92093, USA.
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Otte KS, Niklas JE, Studvick CM, Boggiano AC, Bacsa J, Popov IA, La Pierre HS. Divergent Stabilities of Tetravalent Cerium, Uranium, and Neptunium Imidophosphorane Complexes. Angew Chem Int Ed Engl 2023; 62:e202306580. [PMID: 37327070 DOI: 10.1002/anie.202306580] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
The study of the redox chemistry of mid-actinides (U-Pu) has historically relied on cerium as a model, due to the accessibility of trivalent and tetravalent oxidation states for these ions. Recently, dramatic shifts of lanthanide 4+/3+ non-aqueous redox couples have been established within a homoleptic imidophosphorane ligand framework. Herein we extend the chemistry of the imidophosphorane ligand (NPC=[N=Pt Bu(pyrr)2 ]- ; pyrr=pyrrolidinyl) to tetrahomoleptic NPC complexes of neptunium and cerium (1-M, 2-M, M=Np, Ce) and present comparative structural, electrochemical, and theoretical studies of these complexes. Large cathodic shifts in the M4+/3+ (M=Ce, U, Np) couples underpin the stabilization of higher metal oxidation states owing to the strongly donating nature of the NPC ligands, providing access to the U5+/4+ , U6+/5+ , and to an unprecedented, well-behaved Np5+/4+ redox couple. The differences in the chemical redox properties of the U vs. Ce and Np complexes are rationalized based on their redox potentials, degree of structural rearrangement upon reduction/oxidation, relative molecular orbital energies, and orbital composition analyses employing density functional theory.
Collapse
Affiliation(s)
- Kaitlyn S Otte
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Julie E Niklas
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Chad M Studvick
- Department of Chemistry, The University of Akron, Akron, OH, 44325-3601, USA
| | - Andrew C Boggiano
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - John Bacsa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Ivan A Popov
- Department of Chemistry, The University of Akron, Akron, OH, 44325-3601, USA
| | - Henry S La Pierre
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
- Nuclear and Radiological Engineering Program, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| |
Collapse
|
4
|
Barluzzi L, Giblin SR, Mansikkamäki A, Layfield RA. Identification of Oxidation State +1 in a Molecular Uranium Complex. J Am Chem Soc 2022; 144:18229-18233. [PMID: 36169550 PMCID: PMC9562434 DOI: 10.1021/jacs.2c06519] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The concept of oxidation state plays a fundamentally
important
role in defining the chemistry of the elements. In the f block of
the periodic table, well-known oxidation states in compounds of the
lanthanides include 0, +2, +3 and +4, and oxidation states for the
actinides range from +7 to +2. Oxidation state +1 is conspicuous by
its absence from the f-block elements. Here we show that the uranium(II)
metallocene [U(η5-C5iPr5)2] and the uranium(III) metallocene
[IU(η5-C5iPr5)2] can be reduced by potassium graphite
in the presence of 2.2.2-cryptand to the uranium(I) metallocene [U(η5-C5iPr5)2]− (1) (C5iPr5 = pentaisopropylcyclopentadienyl)
as the salt of [K(2.2.2-cryptand)]+. An X-ray crystallographic
study revealed that 1 has a bent metallocene structure,
and theoretical studies and magnetic measurements confirmed that the
electronic ground state of uranium(I) adopts a 5f3(7s/6dz2)1(6dx2–y2/6dxy)1 configuration. The
metal–ligand bonding in 1 consists of contributions
from uranium 5f, 6d, and 7s orbitals, with the 6d orbitals engaging
in weak but non-negligible covalent interactions. Identification of
the oxidation state +1 for uranium expands the range of isolable oxidation
states for the f-block elements and potentially signposts a synthetic
route to this elusive species for other actinides and the lanthanides.
Collapse
Affiliation(s)
- Luciano Barluzzi
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9JQ, U.K
| | - Sean R Giblin
- School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, U.K
| | - Akseli Mansikkamäki
- NMR Research Group, University of Oulu, P.O. Box 8000, FI-90014 Oulu, Finland
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9JQ, U.K
| |
Collapse
|
5
|
Straub MD, Ouellette ET, Boreen MA, Britt RD, Chakarawet K, Douair I, Gould CA, Maron L, Del Rosal I, Villarreal D, Minasian SG, Arnold J. A Uranium(II) Arene Complex That Acts as a Uranium(I) Synthon. J Am Chem Soc 2021; 143:19748-19760. [PMID: 34787416 DOI: 10.1021/jacs.1c07854] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-electron reduction of the amidate-supported U(III) mono(arene) complex U(TDA)3 (2) with KC8 yields the anionic bis(arene) complex [K[2.2.2]cryptand][U(TDA)2] (3) (TDA = N-(2,6-di-isopropylphenyl)pivalamido). EPR spectroscopy, magnetic susceptibility measurements, and calculations using DFT as well as multireference CASSCF methods all provide strong evidence that the electronic structure of 3 is best represented as a 5f4 U(II) metal center bound to a monoreduced arene ligand. Reactivity studies show 3 reacts as a U(I) synthon by behaving as a two-electron reductant toward I2 to form the dinuclear U(III)-U(III) triiodide species [K[2.2.2]cryptand][(UI(TDA)2)2(μ-I)] (6) and as a three-electron reductant toward cycloheptatriene (CHT) to form the U(IV) complex [K[2.2.2]cryptand][U(η7-C7H7)(TDA)2(THF)] (7). The reaction of 3 with cyclooctatetraene (COT) generates a mixture of the U(III) anion [K[2.2.2]cryptand][U(TDA)4] (1-crypt) and U(COT)2, while the addition of COT to complex 2 instead yields the dinuclear U(IV)-U(IV) inverse sandwich complex [U(TDA)3]2(μ-η8:η3-C8H8) (8). Two-electron reduction of the homoleptic Th(IV) amidate complex Th(TDA)4 (4) with KC8 gives the mono(arene) complex [K[2.2.2]cryptand][Th(TDA)3(THF)] (5). The C-C bond lengths and torsion angles in the bound arene of 5 suggest a direduced arene bound to a Th(IV) metal center; this conclusion is supported by DFT calculations.
Collapse
Affiliation(s)
- Mark D Straub
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael A Boreen
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - R David Britt
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Khetpakorn Chakarawet
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Iskander Douair
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Colin A Gould
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Laurent Maron
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Iker Del Rosal
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO 135 Avenue de Rangueil, 31077 Toulouse, France
| | - David Villarreal
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Murillo J, Bhowmick R, Harriman KLM, Gomez-Torres A, Wright J, Meulenberg RW, Miró P, Metta-Magaña A, Murugesu M, Vlaisavljevich B, Fortier S. Actinide arene-metalates: ion pairing effects on the electronic structure of unsupported uranium-arenide sandwich complexes. Chem Sci 2021; 12:13360-13372. [PMID: 34777754 PMCID: PMC8528047 DOI: 10.1039/d1sc03275e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
Addition of [UI2(THF)3(μ-OMe)]2·THF (2·THF) to THF solutions containing 6 equiv. of K[C14H10] generates the heteroleptic dimeric complexes [K(18-crown-6)(THF)2]2[U(η6-C14H10)(η4-C14H10)(μ-OMe)]2·4THF (118C6·4THF) and {[K(THF)3][U(η6-C14H10)(η4-C14H10)(μ-OMe)]}2 (1THF) upon crystallization of the products in THF in the presence or absence of 18-crown-6, respectively. Both 118C6·4THF and 1THF are thermally stable in the solid-state at room temperature; however, after crystallization, they become insoluble in THF or DME solutions and instead gradually decompose upon standing. X-ray diffraction analysis reveals 118C6·4THF and 1THF to be structurally similar, possessing uranium centres sandwiched between bent anthracenide ligands of mixed tetrahapto and hexahapto ligation modes. Yet, the two complexes are distinguished by the close contact potassium-arenide ion pairing that is seen in 1THF but absent in 118C6·4THF, which is observed to have a significant effect on the electronic characteristics of the two complexes. Structural analysis, SQUID magnetometry data, XANES spectral characterization, and computational analyses are generally consistent with U(iv) formal assignments for the metal centres in both 118C6·4THF and 1THF, though noticeable differences are detected between the two species. For instance, the effective magnetic moment of 1THF (3.74 μB) is significantly lower than that of 118C6·4THF (4.40 μB) at 300 K. Furthermore, the XANES data shows the U LIII-edge absorption energy for 1THF to be 0.9 eV higher than that of 118C6·4THF, suggestive of more oxidized metal centres in the former. Of note, CASSCF calculations on the model complex {[U(η6-C14H10)(η4-C14H10)(μ-OMe)]2}2− (1*) shows highly polarized uranium–arenide interactions defined by π-type bonds where the metal contributions are primarily comprised by the 6d-orbitals (7.3 ± 0.6%) with minor participation from the 5f-orbitals (1.5 ± 0.5%). These unique complexes provide new insights into actinide–arenide bonding interactions and show the sensitivity of the electronic structures of the uranium atoms to coordination sphere effects. Use of Chatt metal-arene protocols with uranium leads to the synthesis of the first well-characterized, unsupported actinide–arenide sandwich complexes. The electronic structures of the actinide centres show a key sensitivity to ion pairing effects.![]()
Collapse
Affiliation(s)
- Jesse Murillo
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
| | - Rina Bhowmick
- Department of Chemistry, University of South Dakota Vermillion South Dakota 57069 USA
| | - Katie L M Harriman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Alejandra Gomez-Torres
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
| | - Joshua Wright
- Department of Physics, Illinois Institute of Technology Chicago Illinois 60616 USA
| | - Robert W Meulenberg
- Department of Physics and Astronomy and Frontier Institute for Research in Sensor Technologies, University of Maine Orono Maine 04469 USA
| | - Pere Miró
- Department of Chemistry, University of South Dakota Vermillion South Dakota 57069 USA
| | - Alejandro Metta-Magaña
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota Vermillion South Dakota 57069 USA
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
| |
Collapse
|
7
|
Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2019. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Shen YP, Cai HX, Chen FY, Guo YR, Pan QJ. A relativistic DFT probe for small-molecule activation mediated by low-valent uranium metallocenes. NEW J CHEM 2021. [DOI: 10.1039/d0nj06296k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations rationalize the capability of uranium metallocenes in activating small molecules, and the experimentally inaccessible CO2 adduct is addressed.
Collapse
Affiliation(s)
- Yong-Peng Shen
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| | - Hong-Xue Cai
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| | - Fang-Yuan Chen
- School of Electrical and Information Engineering
- Heilongjiang University of Technology
- Jixi 158100
- China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education)
- College of Material Science and Engineering
- Northeast Forestry University
- Harbin 150040
- China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin
- China
| |
Collapse
|
9
|
Su DM, Cai HX, Zheng XJ, Niu S, Pan QJ. Theoretical design and exploration of low-valent uranium metallocenes via manipulating cyclopentadienyl substituent. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2020.113107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Boreen MA, Arnold J. The synthesis and versatile reducing power of low-valent uranium complexes. Dalton Trans 2020; 49:15124-15138. [DOI: 10.1039/d0dt03151h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This synthesis and diverse reactivity of uranium(iii) and uranium(ii) complexes is discussed.
Collapse
Affiliation(s)
- Michael A. Boreen
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - John Arnold
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
11
|
Niu S, Cai HX, Zhao HB, Li L, Pan QJ. Redox and structural properties of accessible actinide(ii) metallocalixarenes (Ac to Pu): a relativistic DFT study. RSC Adv 2020; 10:26880-26887. [PMID: 35515776 PMCID: PMC9055483 DOI: 10.1039/d0ra05365a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 01/20/2023] Open
Abstract
The redox properties of actinides play a significant role in manipulating organometallic chemistry and energy/environment science, for being involved in fundamental concepts (oxidation state, bonding and reactivity), nuclear fuel cycles and contamination remediation. Herein, a series of trans-calix[2]pyrrole[2]benzene (H2L2) actinide complexes (An = Ac–Pu, and oxidation states of +II and +III) have been studied by relativistic density functional theory. Reduction potentials (E0) of [AnL2]+/[AnL2] were computed within −2.45 and −1.64 V versus Fc+/Fc in THF, comparable to experimental values of −2.50 V for [UL1e]/[UL1e]− (H3L1e = (Ad,MeArOH)3mesitylene and Ad = adamantyl) and −2.35 V for [U(CpiPr)2]+/[U(CpiPr)2] (CpiPr = C5iPr5). The E0 values show an overall increasing trend from Ac to Pu but a break point at Np being lower than adjacent elements. The arene/actinide mixed reduction mechanism is proposed, showing arenes predominant in Ac–Pa complexes but diverting to metal-centered domination in U–Pu ones. Besides being consistent with previously reported those of AnIII/AnII couples, the changing trend of our reduction potentials is corroborated by geometric data, topological analysis of bonds and electronic structures as well as additional calculations on actinide complexes ligated by tris(alkyloxide)arene, silyl-cyclopentadiene and octadentate Schiff-base polypyrrole in terms of electron affinity. The regularity would help to explore synthesis and property of novel actinide(ii) complex. DFT study reveals the trend of reduction potential of [AnL2]+/[AnL2] (An = Ac ∼ Pu), comparable to previously reported ones of AnIII/AnII and corroborated by calculations of relevant complexes and structural/bonding properties of [AnL2]+/0.![]()
Collapse
Affiliation(s)
- Shuai Niu
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Hong-Xue Cai
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Hong-Bo Zhao
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| |
Collapse
|
12
|
Bacha RUS, Bi YT, Xuan LC, Pan QJ. Inverse Trans Influence in Low-Valence Actinide-Group 10 Metal Complexes of Phosphinoaryl Oxides: A Theoretical Study via Tuning Metals and Donor Ligands. Inorg Chem 2019; 58:10028-10037. [PMID: 31298034 DOI: 10.1021/acs.inorgchem.9b01193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recognition and in-depth understanding of inverse trans influence (ITI) have successfully guided the synthesis of novel actinide complexes and enriched actinide chemistry. Those complexes, however, are mainly limited to the involvement of high-valence actinide and/or metal-ligand multiple bonds. Examples containing both low oxidation state actinide and metal-metal single bond remain rare. Herein, more than 20 actinide-transition metal (An-TM) complexes of phosphinoaryl oxide ligands have been designed in accordance with several experimentally known analogs, by changing the metal atoms (An = Th, Pa, U, Np, and Pu; and TM = Ni, Pd, and Pt), actinide oxidation states (IV and III) and metal-metal axial donor ligands (X = Me3SiO, F, Cl, Br, and I). The relativistic density functional theory study of structural (trans-An-X and cis-An-O toward An-TM), bonding (topological electron/energy density), and electronic properties reveals the order of the ITI stabilizing actinide-metal bond. Computed electron affinity (EA) values, related to the electrochemical reduction, linearly correlate with experimentally measured reduction potentials. Although the same ITI order for the ligand donors was shown as in a previous study, the correlation between electrochemical reduction and the ITI was found to be weak when the actinide atoms were changed. For most complexes, the reduction is primarily of an actinide-based mechanism with minor participation of transition metal and phosphinoaryl oxide, whereas that of thorium-nickel complexes is different.
Collapse
Affiliation(s)
- Raza Ullah Shah Bacha
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Yan-Ting Bi
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Li-Chun Xuan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| |
Collapse
|