1
|
Martínez-Izquierdo L, García-Comas C, Dai S, Navarro M, Tissot A, Serre C, Téllez C, Coronas J. Ultrasmall Functionalized UiO-66 Nanoparticle/Polymer Pebax 1657 Thin-Film Nanocomposite Membranes for Optimal CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4024-4034. [PMID: 38214452 PMCID: PMC10811625 DOI: 10.1021/acsami.3c16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024]
Abstract
Ultrasmall 4 to 6 nm nanoparticles of the metal-organic framework (MOF) UiO-66 (University of Oslo-66) were successfully prepared and embedded into the polymer Pebax 1657 to fabricate thin-film nanocomposite (TFN) membranes for CO2/N2 and CO2/CH4 separations. Furthermore, it has been demonstrated that ligand functionalization with amino (-NH2) and nitro (-NO2) groups significantly enhances the gas separation performance of the membranes. For CO2/N2 separation, 7.5 wt % UiO-66-NH2 nanoparticles provided a 53% improvement in CO2 permeance over the pristine membrane (from 181 to 277 GPU). Regarding the CO2/N2 selectivity, the membranes prepared with 5 wt % UiO-66-NO2 nanoparticles provided an increment of 17% over the membrane without the MOF (from 43.5 to 51.0). However, the CO2 permeance of this membrane dropped to 155 GPU. The addition of 10 wt % ZIF-94 particles with an average particle size of ∼45 nm into the 5 wt % UiO-66-NO2 membrane allowed to increase the CO2 permeance to 192 GPU while maintaining the CO2/N2 selectivity at ca. 51 due to the synergistic interaction between the MOFs and the polymer matrix provided by the hydrophilic nature of ZIF-94. In the case of CO2/CH4 separation, the 7.5 wt % UiO-66-NH2 membrane exhibited the best performance with an increase of the CO2 permeance from 201 to 245 GPU.
Collapse
Affiliation(s)
- Lidia Martínez-Izquierdo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Cristina García-Comas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Shan Dai
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Marta Navarro
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Laboratorio
de Microscopías Avanzadas, Universidad
de Zaragoza, Zaragoza 50018, Spain
| | - Antoine Tissot
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Christian Serre
- Institut
des Matériaux Poreux de Paris, Ecole Normale Supérieure,
ESPCI Paris, CNRS, PSL University, Paris 75005, France
| | - Carlos Téllez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Joaquín Coronas
- Instituto
de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Zaragoza 50018, Spain
- Chemical
and Environmental Engineering Department, Universidad de Zaragoza, Zaragoza 50018, Spain
| |
Collapse
|
2
|
Feng L, Zhang Q, Su J, Ma B, Wan Y, Zhong R, Zou R. Graphene-Oxide-Modified Metal-Organic Frameworks Embedded in Mixed-Matrix Membranes for Highly Efficient CO 2/N 2 Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:24. [PMID: 38202479 PMCID: PMC10780323 DOI: 10.3390/nano14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
MOF-74 (metal-organic framework) is utilized as a filler in mixed-matrix membranes (MMMs) to improve gas selectivity due to its unique one-dimensional hexagonal channels and high-density open metal sites (OMSs), which exhibit a strong affinity for CO2 molecules. Reducing the agglomeration of nanoparticles and improving the compatibility with the matrix can effectively avoid the existence of non-selective voids to improve the gas separation efficiency. We propose a novel, layer-by-layer modification strategy for MOF-74 with graphene oxide. Two-dimensional graphene oxide nanosheets as a supporting skeleton creatively improve the dispersion uniformity of MOFs in MMMs, enhance their interfacial compatibility, and thus optimize the selective gas permeability. Additionally, they extended the gas diffusion paths, thereby augmenting the dissolution selectivity. Compared with doping with a single component, the use of a GO skeleton to disperse MOF-74 into Pebax®1657 (Polyether Block Amide) achieved a significant improvement in terms of the gas separation effect. The CO2/N2 selectivity of Pebax®1657-MOF-74 (Ni)@GO membrane with a filler concentration of 10 wt% was 76.96, 197.2% higher than the pristine commercial membrane Pebax®1657. Our results highlight an effective way to improve the selective gas separation performance of MMMs by functionalizing the MOF supported by layered GO. As an efficient strategy for developing porous MOF-based gas separation membranes, this method holds particular promise for manufacturing advanced carbon dioxide separation membranes and also concentrates on improving CO2 capture with new membrane technologies, a key step in reducing greenhouse gas emissions through carbon capture and storage.
Collapse
Affiliation(s)
- Long Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Qiuning Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Jianwen Su
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Bing Ma
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yinji Wan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Ruiqin Zhong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
3
|
Yu C, Jia Y, Fang K, Qin Y, Deng N, Liang Y. Preparation hierarchical porous MOF membranes with island-like structure for efficient gas separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Kunalan S, Palanivelu K. Polymeric composite membranes in carbon dioxide capture process: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38735-38767. [PMID: 35275372 DOI: 10.1007/s11356-022-19519-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Carbon dioxide (CO2) emission to the atmosphere is the prime cause of certain environmental issues like global warming and climate change, in the present day scenario. Capturing CO2 from various stationary industrial emission sources is one of the initial steps to control the aforementioned problems. For this concern, a variety of resources, such as liquid absorbents, solid adsorbents, and membranes, have been utilized for CO2 capturing from various emission sources. Focused on membrane-based CO2 capture, polymeric membranes with composite structure (polymeric composite membrane) offer a better performance in CO2 capturing process than other membranes, due to the composite structure it offers higher gas flux and less material usage, thus facile to use high performed expensive material for membrane fabrication and achieved good efficacy in CO2 capture. This compressive review delivers the utilization of different polymeric composite membranes in CO2 capturing applications. Further, the types of polymeric materials used and the different physicochemical modifications of those membrane materials and their CO2 capturing ability are briefly discussed in the text. In conclusion, the current status and possible perspective ways to improve the CO2 capture process in industrial CO2 gas separation applications are described in this review.
Collapse
Affiliation(s)
- Shankar Kunalan
- Centre for Environmental Studies, Anna University, Chennai, 600 025, India
| | - Kandasamy Palanivelu
- Centre for Environmental Studies, Anna University, Chennai, 600 025, India.
- Centre for Climate Change and Disaster Management, Anna University, Chennai, 600 025, India.
| |
Collapse
|
5
|
Zakariya S, Yeong YF, Jusoh N, Tan LS. Performance of Multilayer Composite Hollow Membrane in Separation of CO 2 from CH 4 in Mixed Gas Conditions. Polymers (Basel) 2022; 14:1480. [PMID: 35406352 PMCID: PMC9002636 DOI: 10.3390/polym14071480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/01/2023] Open
Abstract
Composite membranes comprising NH2-MIL-125(Ti)/PEBAX coated on PDMS/PSf were prepared in this work, and their gas separation performance for high CO2 feed gas was investigated under various operating circumstances, such as pressure and CO2 concentration, in mixed gas conditions. The functional groups and morphology of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). CO2 concentration and feed gas pressure were demonstrated to have a considerable impact on the CO2 and CH4 permeance, as well as the CO2/CH4 mixed gas selectivity of the resultant membrane. As CO2 concentration was raised from 14.5 vol % to 70 vol %, a trade-off between permeance and selectivity was found, as CO2 permeance increased by 136% and CO2/CH4 selectivity reduced by 42.17%. The membrane produced in this work exhibited pressure durability up to 9 bar and adequate gas separation performance at feed gas conditions consisting of high CO2 content.
Collapse
Affiliation(s)
- Shahidah Zakariya
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (S.Z.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Yin Fong Yeong
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (S.Z.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Norwahyu Jusoh
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (S.Z.); (N.J.)
- CO2 Research Centre (CO2RES), R&D Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Lian See Tan
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| |
Collapse
|
6
|
Clarizia G, Bernardo P. A Review of the Recent Progress in the Development of Nanocomposites Based on Poly(ether- block-amide) Copolymers as Membranes for CO 2 Separation. Polymers (Basel) 2021; 14:10. [PMID: 35012033 PMCID: PMC8747106 DOI: 10.3390/polym14010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 01/11/2023] Open
Abstract
An inspiring challenge for membrane scientists is to exceed the current materials' performance while keeping the intrinsic processability of the polymers. Nanocomposites, as mixed-matrix membranes, represent a practicable response to this strongly felt need, since they combine the superior properties of inorganic fillers with the easy handling of the polymers. In the global strategy of containing the greenhouse effect by pursuing a model of sustainable growth, separations involving CO2 are some of the most pressing topics due to their implications in flue gas emission and natural gas upgrading. For this purpose, Pebax copolymers are being actively studied by virtue of a macromolecular structure that comprises specific groups that are capable of interacting with CO2, facilitating its transport with respect to other gas species. Interestingly, these copolymers show a high versatility in the incorporation of nanofillers, as proved by the large number of papers describing nanocomposite membranes based on Pebax for the separation of CO2. Since the field is advancing fast, this review will focus on the most recent progress (from the last 5 years), in order to provide the most up-to-date overview in this area. The most recent approaches for developing Pebax-based mixed-matrix membranes will be discussed, evidencing the most promising filler materials and analyzing the key-factors and the main aspects that are relevant in terms of achieving the best effectiveness of these multifaceted membranes for the development of innovative devices.
Collapse
Affiliation(s)
| | - Paola Bernardo
- Institute on Membrane Technology (ITM-CNR), Via P. Bucci 17/C, 87036 Rende, Italy;
| |
Collapse
|
7
|
Usman M, Helal A, Abdelnaby MM, Alloush AM, Zeama M, Yamani ZH. Trends and Prospects in UiO-66 Metal-Organic Framework for CO 2 Capture, Separation, and Conversion. CHEM REC 2021; 21:1771-1791. [PMID: 33955166 DOI: 10.1002/tcr.202100030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
Among thousands of known metal-organic frameworks (MOFs), the University of Oslo's MOF (UiO-66) exhibits unique structure topology, chemical and thermal stability, and intriguing tunable properties, that have gained incredible research interest. This paper summarizes the structural advancement of UiO-66 and its role in CO2 capture, separation, and transformation into chemicals. The first part of the review summarizes the fast-growing literature related to the CO2 capture reported by UiO-66 during the past ten years. The second part provides an overview of various advancements in UiO-66 membranes in CO2 purification. The third part describes the role of UiO-66 and its composites as catalysts for CO2 conversion into useful products. Despite many achievements, significant challenges associated with UiO-66 are addressed, and future perspectives are comprehensively presented to forecast how UiO-66 might be used further for CO2 management.
Collapse
Affiliation(s)
- Muhammad Usman
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Aasif Helal
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Mahmoud M Abdelnaby
- King Abdulaziz City for Science and Technology - Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at, KFUPM, Dhahran, 31261, Saudi Arabia
| | - Ahmed M Alloush
- King Abdulaziz City for Science and Technology - Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at, KFUPM, Dhahran, 31261, Saudi Arabia
| | - Mostafa Zeama
- King Abdulaziz City for Science and Technology - Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at, KFUPM, Dhahran, 31261, Saudi Arabia
| | - Zain H Yamani
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
8
|
Pardo F, Gutiérrez-Hernández SV, Hermida-Merino C, Araújo JMM, Piñeiro MM, Pereiro AB, Zarca G, Urtiaga A. Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part II: Gas Separation Properties toward Fluorinated Greenhouse Gases. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:582. [PMID: 33652731 PMCID: PMC7996786 DOI: 10.3390/nano11030582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Membrane technology can play a very influential role in the separation of the constituents of HFC refrigerant gas mixtures, which usually exhibit azeotropic or near-azeotropic behavior, with the goal of promoting the reuse of value-added compounds in the manufacture of new low-global warming potential (GWP) refrigerant mixtures that abide by the current F-gases regulations. In this context, the selective recovery of difluorometane (R32, GWP = 677) from the commercial blend R410A (GWP = 1924), an equimass mixture of R32 and pentafluoroethane (R125, GWP = 3170), is sought. To that end, this work explores for the first time the separation performance of novel mixed-matrix membranes (MMMs) functionalized with ioNanofluids (IoNFs) consisting in a stable suspension of exfoliated graphene nanoplatelets (xGnP) into a fluorinated ionic liquid (FIL), 1-ethyl-3-methylpyridinium perfluorobutanesulfonate ([C2C1py][C4F9SO3]). The results show that the presence of IoNF in the MMMs significantly enhances gas permeation, yet at the expense of slightly decreasing the selectivity of the base polymer. The best results were obtained with the MMM containing 40 wt% IoNF, which led to an improved permeability of the gas of interest (PR32 = 496 barrer) with respect to that of the neat polymer (PR32= 279 barrer) with a mixed-gas separation factor of 3.0 at the highest feed R410A pressure tested. Overall, the newly fabricated IoNF-MMMs allowed the separation of the near-azeotropic R410A mixture to recover the low-GWP R32 gas, which is of great interest for the circular economy of the refrigeration sector.
Collapse
Affiliation(s)
- Fernando Pardo
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, 39005 Santander, Spain; (F.P.); (S.V.G.-H.); (G.Z.)
| | - Sergio V. Gutiérrez-Hernández
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, 39005 Santander, Spain; (F.P.); (S.V.G.-H.); (G.Z.)
| | - Carolina Hermida-Merino
- Centro de Investigaciones Biomédicas (CINBIO), Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (C.H.-M.); (M.M.P.)
| | - João M. M. Araújo
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.M.M.A.); (A.B.P.)
| | - Manuel M. Piñeiro
- Centro de Investigaciones Biomédicas (CINBIO), Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain; (C.H.-M.); (M.M.P.)
| | - Ana B. Pereiro
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.M.M.A.); (A.B.P.)
| | - Gabriel Zarca
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, 39005 Santander, Spain; (F.P.); (S.V.G.-H.); (G.Z.)
| | - Ane Urtiaga
- Department of Chemical and Biomolecular Engineering, Universidad de Cantabria, 39005 Santander, Spain; (F.P.); (S.V.G.-H.); (G.Z.)
| |
Collapse
|
9
|
Sánchez-Laínez J, Etxeberria-Benavides M, David O, Téllez C, Coronas J. Green Preparation of Thin Films of Polybenzimidazole on Flat and Hollow Fiber Supports: Application to Hydrogen Separation. CHEMSUSCHEM 2021; 14:952-960. [PMID: 33283985 DOI: 10.1002/cssc.202002700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/05/2020] [Indexed: 06/12/2023]
Abstract
This work shows the preparation of thin films, with thickness from 70 nm to 1 μm, of meta-polybenzimidazole (m-PBI) on polyimide P84 supports. Ethanolic solutions of m-PBI were used to coat flat and hollow fiber supports of asymmetric P84 with m-PBI in a process where the coating and drying was performed at room temperature. A solution of NaOH in EtOH allowed the dissolution of the m-PBI powder, providing the perfect coating solution to build thin films of m-PBI without damaging the polymeric support. It also meant a green alternative, avoiding the use of toxic solvents, such as dimethylacetamide. The resulting membranes have been tested for the separation of H2 mixtures at high temperature at different setups to allow checking their reproducibility. With 100 nm thickness the membranes showed their best gas separation performance. For flat membranes at 180 °C and 3 bar feed pressure a H2 permeance of 48.5 GPU was obtained, with respective H2 /CO2 and H2 /N2 selectivities of 33.3 and 55.8. Besides, the hollow fibers under a feed pressure of 6 bar and tested at the same temperature showed near 90 GPU of H2 with a H2 /CO2 selectivity of 13.5 in the one-fiber module and over 39 GPU of H2 with a H2 /CO2 selectivity of 20.2 in the five-fiber module. Finally, the stability of the membranes was proved for 22 days at 180 °C.
Collapse
Affiliation(s)
- Javier Sánchez-Laínez
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018, Zaragoza, Spain
| | - Miren Etxeberria-Benavides
- TECNALIA, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, 20009, Donostia-San Sebastián, Spain
| | - Oana David
- TECNALIA, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, 20009, Donostia-San Sebastián, Spain
| | - Carlos Téllez
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018, Zaragoza, Spain
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
- Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018, Zaragoza, Spain
| |
Collapse
|
10
|
Pazani F, Aroujalian A. High-performance gas separation using mixed-matrix composite membranes containing graphene nanoplatelets. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03467-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Usman M, Ali M, Al-Maythalony BA, Ghanem AS, Saadi OW, Ali M, Jafar Mazumder MA, Abdel-Azeim S, Habib MA, Yamani ZH, Ensinger W. Highly Efficient Permeation and Separation of Gases with Metal-Organic Frameworks Confined in Polymeric Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49992-50001. [PMID: 33104340 DOI: 10.1021/acsami.0c13715] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work demonstrates the confinement of porous metal-organic framework (HKUST-1) on the surface and walls of track-etched nanochannel in polyethylene terephthalate (np-PET) membrane using a liquid-phase epitaxy (LPE) technique. The composite membrane (HKUST-1/np-PET) exhibits defect-free MOF growth continuity, strong attachment of MOF to the support, and a high degree of flexibility. The high flexibility and the strong confinement of the MOF in composite membrane results from (i) the flexible np-PET support, (ii) coordination attachment between HKUST-1 and the support, and (iii) the growth of HKUST-1 crystal in nanoconfined geometries. The MOF has a preferred growth orientation with a window size of 3.5 Å, resulting in a clear cut-off of CO2 from natural gas and olefins. The experimental results and DFT calculations show that the restricted diffusion of gases only takes place through the nanoporous MOF confined in the np-PET substrate. This research thereby provides a new perspective to grow other porous MOFs in artificially prepared nanochannels for the realization of continuous, flexible, and defect-free membranes for various applications.
Collapse
Affiliation(s)
- Muhammad Usman
- Center for Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Mubarak Ali
- Materialforschung, GSI Helmholtzzentrum für Schwerionenforschungm GmbH, Darmstadt D-64291, Germany
- Fachbereich Material-u, Geowissenschaften, Fachgebiet Materialanalytik, Technische Universität Darmstadt, Darmstadt D-64287, Germany
| | - Bassem A Al-Maythalony
- Technology Innovation Center on Carbon Capture and Sequestration (TIC on CCS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Akram S Ghanem
- King Abdulaziz City for Science and Technology-Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at KFUPM, Dhahran 31261, Saudi Arabia
| | - Omar Waqas Saadi
- King Abdulaziz City for Science and Technology-Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at KFUPM, Dhahran 31261, Saudi Arabia
| | - Murad Ali
- Center for Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Mohammad A Jafar Mazumder
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Safwat Abdel-Azeim
- Center of Integrative Petroleum Research, College of Petroleum Engineering and Geosciences, KFUPM, Dhahran 31261, Saudi Arabia
| | - Mohamed A Habib
- King Abdulaziz City for Science and Technology-Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at KFUPM, Dhahran 31261, Saudi Arabia
| | - Zain H Yamani
- Center for Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Wolfgang Ensinger
- Fachbereich Material-u, Geowissenschaften, Fachgebiet Materialanalytik, Technische Universität Darmstadt, Darmstadt D-64287, Germany
| |
Collapse
|
12
|
CH
4
‐Selective Mixed‐Matrix Membranes Containing Functionalized Silica for Natural Gas Purification. Chem Eng Technol 2020. [DOI: 10.1002/ceat.202000105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Fang M, Montoro C, Semsarilar M. Metal and Covalent Organic Frameworks for Membrane Applications. MEMBRANES 2020; 10:E107. [PMID: 32455983 PMCID: PMC7281687 DOI: 10.3390/membranes10050107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Better and more efficient membranes are needed to face imminent and future scientific, technological and societal challenges. New materials endowed with enhanced properties are required for the preparation of such membranes. Metal and Covalent Organic Frameworks (MOFs and COFs) are a new class of crystalline porous materials with large surface area, tuneable pore size, structure, and functionality, making them a perfect candidate for membrane applications. In recent years an enormous number of articles have been published on the use of MOFs and COFs in preparation of membranes for various applications. This review gathers the work reported on the synthesis and preparation of membranes containing MOFs and COFs in the last 10 years. Here we give an overview on membranes and their use in separation technology, discussing the essential factors in their synthesis as well as their limitations. A full detailed summary of the preparation and characterization methods used for MOF and COF membranes is given. Finally, applications of these membranes in gas and liquid separation as well as fuel cells are discussed. This review is aimed at both experts in the field and newcomers, including students at both undergraduate and postgraduate levels, who would like to learn about preparation of membranes from crystalline porous materials.
Collapse
Affiliation(s)
| | | | - Mona Semsarilar
- Institut Européen des Membranes—IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, 34095 Montpellier, France;
| |
Collapse
|
14
|
Castro-Muñoz R, Agrawal KV, Coronas J. Ultrathin permselective membranes: the latent way for efficient gas separation. RSC Adv 2020; 10:12653-12670. [PMID: 35497580 PMCID: PMC9051376 DOI: 10.1039/d0ra02254c] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
Membrane gas separation has attracted the attention of chemical engineers for the selective separation of gases. Among the different types of membranes used, ultrathin membranes are recognized to break the trade-off between selectivity and permeance to provide ultimate separation. Such success has been associated with the ultrathin nature of the selective layer as well as their defect-free structure. These membrane features can be obtained from specific membrane preparation procedures used, in which the intrinsic properties of different nanostructured materials (e.g., polymers, zeolites, covalent-organic frameworks, metal-organic frameworks, and graphene and its derivatives) also play a crucial role. It is likely that such a concept of membranes will be explored in the coming years. Therefore, the goal of this review study is to give the latest insights into the use of ultrathin selective barriers, highlighting and describing the primary membrane preparation protocols applied, such as atomic layer deposition, in situ crystal formation, interfacial polymerization, Langmuir-Blodgett technique, facile filtration process, and gutter layer formation, to mention just a few. For this, the most recent approaches are addressed, with particular emphasis on the most relevant results in separating gas molecules. A brief overview of the fundamentals for the application of the techniques is given. Finally, by reviewing the ongoing development works, the concluding remarks and future trends are also provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista 50110 Toluca de Lerdo Mexico
| | - Kumar Varoon Agrawal
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne Sion Switzerland
| | - Joaquín Coronas
- Chemical and Environmental Engineering Department, Instituto de Nanociencia de Aragón (INA), Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC 50018 Zaragoza Spain
| |
Collapse
|
15
|
Sánchez-Laínez J, Ballester-Catalán M, Javierre-Ortín E, Téllez C, Coronas J. Pebax® 1041 supported membranes with carbon nanotubes prepared via phase inversion for CO 2/N 2 separation. Dalton Trans 2020; 49:2905-2913. [PMID: 32068209 DOI: 10.1039/c9dt04424h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work shows the preparation of Pebax® 1041 films from solutions in DMAc and water-DMAc emulsions as alternatives to those prepared by extrusion that can be found in the literature. These membranes were tested in post-combustion CO2 capture, in the separation of a 15/85 (v/v) CO2/N2 mixture. Self-supported membranes of Pebax® 1041 were prepared by solvent evaporation and phase inversion. The characterization of these films defined the intrinsic properties of this polymer in terms of chemical structure, crystallinity, thermal stability and gas separation performance (a CO2 permeability of 30 Barrer with a CO2/N2 selectivity of 21 at 35 °C and 3 bar feed pressure). Supported Pebax® 1041 membranes were also developed to decrease the Pebax® thickness (in the 1.5-10 μm range), resulting in a higher permeance. These membranes were prepared by a phase inversion process consisting of the precipitation of a Pebax® 1041/DMAc solution in water and dispersing it to form a stable emulsion that was drop-cast on PSF asymmetric supports. Once dried, the polymer formed a dense continuous layer. The phase inversion methodology is "greener" than solvent evaporation since dimethylacetamide is not released as toxic vapour during membrane preparation. The amount drop-cast led to a different selective layer thickness, which was enhanced by the dispersion of MWCNTs in the polymer emulsion. The properties of the Pebax® selective layer were studied by thermogravimetry and by measuring the contact angle of the membrane surface, and the optimal CO2/N2 selectivity (22.6) was obtained with a CO2 permeance of 3.0 GPU.
Collapse
Affiliation(s)
- Javier Sánchez-Laínez
- Chemical and Environmental Engineering Department, Instituto de Nanociencia de Aragón (INA) and Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain.
| | - Marcos Ballester-Catalán
- Chemical and Environmental Engineering Department, Instituto de Nanociencia de Aragón (INA) and Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain.
| | - Enrique Javierre-Ortín
- Chemical and Environmental Engineering Department, Instituto de Nanociencia de Aragón (INA) and Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain.
| | - Carlos Téllez
- Chemical and Environmental Engineering Department, Instituto de Nanociencia de Aragón (INA) and Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain.
| | - Joaquín Coronas
- Chemical and Environmental Engineering Department, Instituto de Nanociencia de Aragón (INA) and Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain.
| |
Collapse
|
16
|
Abstract
AbstractMetal-organic frameworks (MOFs) have emerged as a class of promising membrane materials. UiO-66 is a prototypical and stable MOF material with a number of analogues. In this article, we review five approaches for fabricating UiO-66 polycrystalline membranes including in situ synthesis, secondary synthesis, biphase synthesis, gas-phase deposition and electrochemical deposition, as well as their applications in gas separation, pervaporation, nanofiltration and ion separation. On this basis, we propose possible methods for scalable synthesis of UiO-66 membranes and their potential separation applications in the future.
Collapse
|
17
|
Fauzan NAB, Mannan HA, Nasir R, Mohshim DFB, Mukhtar H. Various Techniques for Preparation of Thin‐Film Composite Mixed‐Matrix Membranes for CO
2
Separation. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nur Aqilah Bt Fauzan
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Hafiz Abdul Mannan
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Rizwan Nasir
- University of JeddahDepartment of Chemical Engineering 23890 Jeddah Saudi Arabia
| | - Dzeti Farhah Bt Mohshim
- Universiti Teknologi PETRONASPetroleum Engineering Department 32610 Seri Iskandar Perak Malaysia
| | - Hilmi Mukhtar
- Universiti Teknologi PETRONASChemical Engineering Department 32610 Seri Iskandar Perak Malaysia
| |
Collapse
|
18
|
Martínez-Izquierdo L, Malankowska M, Sánchez-Laínez J, Téllez C, Coronas J. Poly(ether- block-amide) copolymer membrane for CO 2/N 2 separation: the influence of the casting solution concentration on its morphology, thermal properties and gas separation performance. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190866. [PMID: 31598310 PMCID: PMC6774959 DOI: 10.1098/rsos.190866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The present work is focused on the study of the effect that the casting solution concentration has on the morphology and gas separation performance of poly(ether-block-amide) copolymer membranes (Pebax® MH 1657). With this aim, three different concentrations of Pebax® MH 1657 in the casting solution (1, 3 and 5 wt%) were used to prepare dense membranes with a thickness of 40 µm. The morphology and thermal stability of all membranes were characterized by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, rotational viscometry and thermogravimetric analyses. An increase in crystallinity was notable when the amount of solvent in the Pebax® MH 1657 solution was higher, mainly related to the polymer chains arrangement and the solvent evaporation time. Such characteristic seemed to play a key role in the thermal degradation of the membranes, confirming that the most crystalline materials tend to be thermally more stable than those with lower crystallinity. To study the influence of their morphology and operating temperature on the CO2 separation, gas separation tests were conducted with the gas mixture CO2/N2. Results indicated that a compromise must be found between the amount of solvent used to prepare the membranes and the crystallinity, in order to reach the best gas separation performance. In this study, the best performance was achieved with the membrane prepared from a 3 wt% casting solution, reaching at 35°C and under a feed pressure of 3 bar, a CO2 permeability of 110 Barrer and a CO2/N2 selectivity of 36.
Collapse
|
19
|
Sharma P, Kim YJ, Kim MZ, Alam SF, Cho CH. A stable polymeric chain configuration producing high performance PEBAX-1657 membranes for CO 2 separation. NANOSCALE ADVANCES 2019; 1:2633-2644. [PMID: 36132731 PMCID: PMC9419191 DOI: 10.1039/c9na00170k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/12/2019] [Indexed: 06/11/2023]
Abstract
Although PEBAX-1657 is one of the promising polymeric materials for selective CO2 separation, there remain many questions about the optimal polymeric structure and possibility of improving performance without adulterating its basic structure by impregnating inorganic fillers. In order to improve the gas separation performance, low thickness PEBAX membranes were synthesized under steady solvent evaporation conditions by keeping in mind that one of its segments (nylon 6) shows structural variance and molecular orientation with a change in the evaporation rate. Furthermore, phase pure zeolite nanocrystals with cubic (zeolite A) and octahedral (zeolite Y) shapes have been synthesized through liquid phase routes using microwave hydrothermal reactors. The average sizes of zeolite A and Y crystals are around 55 and 40 nm, respectively. The inspection of XRD, DSC and Raman shift of PEBAX membranes demonstrates the formation of a stable polymeric structure with an improved crystalline state which results in high CO2 permeability membranes. The CO2 permeability as well as diffusivity increase with a decrease in membrane thickness and reach a maximum value of 184.7 Barrer and 2.6 × 10-6 cm2 s-1, respectively. The as-fabricated pristine PEBAX membrane shows much better performance in terms of permeance (CO2 184.7 Barrer), diffusivity (CO2 2.6 × 10-6 cm2 s-1) and selectivity (CO2/N2 59.7), which substantiate its promising prospects for CO2 capture. This exceptional performance of the pristine PEBAX membrane arises from the free volume generated during the steady polymerization. This reported approach for PEBAX membrane synthesis provides a direction in the design of membrane fabrication processes for economic CO2 separation.
Collapse
Affiliation(s)
- Pankaj Sharma
- Graduate School of Energy Science and Technology, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Republic of Korea
| | - Young-Jin Kim
- Graduate School of Energy Science and Technology, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Republic of Korea
| | - Min-Zy Kim
- Graduate School of Energy Science and Technology, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Republic of Korea
| | - Syed Fakhar Alam
- Graduate School of Energy Science and Technology, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Republic of Korea
| | - Churl Hee Cho
- Graduate School of Energy Science and Technology, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Republic of Korea
| |
Collapse
|
20
|
Li X, Hou J, Guo R, Wang Z, Zhang J. Constructing Unique Cross-Sectional Structured Mixed Matrix Membranes by Incorporating Ultrathin Microporous Nanosheets for Efficient CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24618-24626. [PMID: 31257849 DOI: 10.1021/acsami.9b07815] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ultrathin microporous nanosheets denoted as Zn-tetra-(4-carboxyphenyl)porphyrin (Zn-TCPP) were synthesized and incorporated into a Pebax MH 1657 (Pebax) polymer to fabricate mixed matrix membranes (MMMs) for efficient CO2 separation. The Zn-TCPP nanosheets with a microporous structure provide high-speed channels for fast CO2 transport and shorten the diffusion pathways, both contributing toward high CO2 permeability. Furthermore, scanning electron microscopy results indicate that the ultrathin Zn-TCPP nanosheets with an ultrahigh aspect ratio (>200) tend to arrange horizontally in the Pebax matrix. The obtained unique cross-sectional structure of the MMMs functions as a selective barrier, allowing repeated discrimination of gases due to the tortuous interlayer of horizontal nanosheets, thus improving the selectivity of the MMMs. In addition, the horizontally arranged microporous nanosheets were found to strongly interact with the membrane matrix and endowed the MMMs with excellent interfacial compatibility, which improved the CO2 permeability and eliminated unselective permeation pathways. Significantly, the optimized CO2 separation performance of the MMMs surpassed the 2008 Robeson's limit.
Collapse
Affiliation(s)
- Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Jinpeng Hou
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Zhongming Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| | - Jianshu Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan , Shihezi University , Shihezi , Xinjiang 832003 , China
| |
Collapse
|