1
|
Ravanbakhsh H, Dianat S. Voltammetric and amperometric determination of iodate using a modified glassy carbon electrode based on PW12/MOF/P@ERGO nanohybrid. SENSING AND BIO-SENSING RESEARCH 2023. [DOI: 10.1016/j.sbsr.2023.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023] Open
|
2
|
Morgenstern A, Thomas R, Sharma A, Weber M, Selyshchev O, Milekhin I, Dentel D, Gemming S, Tegenkamp C, Zahn DRT, Mehring M, Salvan G. Deposition of Nanosized Amino Acid Functionalized Bismuth Oxido Clusters on Gold Surfaces. NANOMATERIALS 2022; 12:nano12111815. [PMID: 35683672 PMCID: PMC9182479 DOI: 10.3390/nano12111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
Bismuth compounds are of growing interest with regard to potential applications in catalysis, medicine, and electronics, for which their environmentally benign nature is one of the key factors. One thing that currently hampers the further development of bismuth oxido-based materials, however, is the often low solubility of the precursors, which makes targeted immobilisation on substrates challenging. We present an approach towards the solubilisation of bismuth oxido clusters by introducing an amino carboxylate as a functional group. For this purpose, the bismuth oxido cluster [Bi38O45(NO3)20(dmso)28](NO3)4·4dmso (dmso = dimethyl sulfoxide) was reacted with the sodium salt of tert-butyloxycabonyl (Boc)-protected phenylalanine (L-Phe) to obtain the soluble and chiral nanocluster [Bi38O45(Boc–Phe–O)24(dmso)9]. The exchange of the nitrates by the amino carboxylates was proven by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, as well as elemental analysis and X-ray photoemission spectroscopy. The solubility of the bismuth oxido cluster in a protic as well as an aprotic polar organic solvent and the growth mode of the clusters upon spin, dip, and drop coating on gold surfaces were studied by a variety of microscopy, as well as spectroscopic techniques. In all cases, the bismuth oxido clusters form crystalline agglomerations with size, height, and distribution on the substrate that can be controlled by the choice of the solvent and of the deposition method.
Collapse
Affiliation(s)
- Annika Morgenstern
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany; (A.M.); (A.S.); (O.S.); (I.M.); (D.R.T.Z.)
| | - Rico Thomas
- Coordination Chemistry, Institute of Chemistry, Chemnitz University of Technology, 09107 Chemnitz, Germany; (R.T.); (M.W.)
| | - Apoorva Sharma
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany; (A.M.); (A.S.); (O.S.); (I.M.); (D.R.T.Z.)
| | - Marcus Weber
- Coordination Chemistry, Institute of Chemistry, Chemnitz University of Technology, 09107 Chemnitz, Germany; (R.T.); (M.W.)
- Center of Materials, Architectures and Integration of Nanomembranes, Chemnitz University of Technology, 09126 Chemnitz, Germany;
| | - Oleksandr Selyshchev
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany; (A.M.); (A.S.); (O.S.); (I.M.); (D.R.T.Z.)
| | - Ilya Milekhin
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany; (A.M.); (A.S.); (O.S.); (I.M.); (D.R.T.Z.)
| | - Doreen Dentel
- Solid Surface Analysis, Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany; (D.D.); (C.T.)
| | - Sibylle Gemming
- Center of Materials, Architectures and Integration of Nanomembranes, Chemnitz University of Technology, 09126 Chemnitz, Germany;
- Theoretical Physics of Quantum Mechanical Processes and Systems, Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Christoph Tegenkamp
- Solid Surface Analysis, Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany; (D.D.); (C.T.)
| | - Dietrich R. T. Zahn
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany; (A.M.); (A.S.); (O.S.); (I.M.); (D.R.T.Z.)
- Center of Materials, Architectures and Integration of Nanomembranes, Chemnitz University of Technology, 09126 Chemnitz, Germany;
| | - Michael Mehring
- Coordination Chemistry, Institute of Chemistry, Chemnitz University of Technology, 09107 Chemnitz, Germany; (R.T.); (M.W.)
- Center of Materials, Architectures and Integration of Nanomembranes, Chemnitz University of Technology, 09126 Chemnitz, Germany;
- Correspondence: (M.M.); (G.S.)
| | - Georgeta Salvan
- Semiconductor Physics, Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz, Germany; (A.M.); (A.S.); (O.S.); (I.M.); (D.R.T.Z.)
- Center of Materials, Architectures and Integration of Nanomembranes, Chemnitz University of Technology, 09126 Chemnitz, Germany;
- Correspondence: (M.M.); (G.S.)
| |
Collapse
|
3
|
Ravanbakhsh H, Dianat S, Hosseinian A. Fabrication of a polyoxotungstate/metal-organic framework/phosphorus-doped reduced graphene oxide nanohybrid modified glassy carbon electrode by electrochemical reduction and its electrochemical properties. RSC Adv 2022; 12:9210-9222. [PMID: 35424841 PMCID: PMC8985131 DOI: 10.1039/d2ra00746k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022] Open
Abstract
Hybrid nanocomposites based on polyoxometalates (POMs), metal-organic frameworks (MOFs), and graphene oxide (GO) have a unique set of properties. They have specific properties such as high acidity, oxygen-rich surface, and good redox capability from POMs. In contrast, they do not have weaknesses of POMs such as a low surface area, and high solubility in aqueous media. Herein, a novel organic-inorganic nanohybrid compound based on H3PW12O40 (PW12), a Co-based MOF, and GO was prepared. The prepared hybrid nanocomposite (PW12/MOF/GO) was characterized using different techniques. Then, a PW12/MOF/GO nanocomposite modified glassy carbon electrode (GCE) was fabricated by the drop-casting method and next was dried at room temperature. Then, the PW12/MOF/GO/GCE was subjected to electrochemical reduction at a constant potential of -1.5 V, in 0.1 M H3PO4 solution containing 0.10% w/v PW12/MOF/GO additive. The morphology, electrochemical activity, and stability of the modified electrode (PW12/MOF/P@ERGO/GCE) were studied with FE-SEM coupled with EDS, CV, and amperometry. The obtained results confirmed that the PW12/MOF/P@ERGO/GCE could be effective in hydrogen evolution reaction (HER). The electrochemical activity of the PW12/MOF/P@ERGO/GCE due to the desirable microstructure of the electrocatalyst (e.g. high active surface area and homogeneous distribution of the PW12/MOF/P@ERGO), and also the synergistic effect of the blocks, is more than those of PW12/GCE, MOF/GCE, PW12/MOF/GCE, and P@ERGO/GCE. Moreover, the PW12/MOF/P@ERGO/GCE showed an excellent long-term stability under the air atmosphere.
Collapse
Affiliation(s)
- Hamid Ravanbakhsh
- Department of Chemistry, Faculty of Sciences, University of Hormozgan Bandar Abbas 79161-93145 Iran +98 76 33670121
| | - Somayeh Dianat
- Department of Chemistry, Faculty of Sciences, University of Hormozgan Bandar Abbas 79161-93145 Iran +98 76 33670121
| | - Amin Hosseinian
- Department of Chemistry, Faculty of Sciences, University of Hormozgan Bandar Abbas 79161-93145 Iran +98 76 33670121
| |
Collapse
|
4
|
Fabrication and electrochemical study of K(1,1′- (1,4 Butanediyl)dipyridinium)2[PW11O39Co(H2O)]/MWCNTs-COOH nanohybrid immobilized on glassy carbon for electrocatalytic detection of nitrite. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Sharifi M, Dianat S, Hosseinian A. Electrochemical investigation and amperometry determination iodate based on ionic liquid/polyoxotungstate/P-doped electrochemically reduced graphene oxide multi-component nanocomposite modified glassy carbon electrode. RSC Adv 2021; 11:8993-9007. [PMID: 35423408 PMCID: PMC8695343 DOI: 10.1039/d1ra00845e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/11/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
A novel modified glassy carbon electrode (GCE) was successfully fabricated with a tetra-component nanocomposite consisting of (1,1′-(1,4-butanediyl)dipyridinium) ionic liquid (bdpy), SiW11O39Ni(H2O) (SiW11Ni) Keggin-type polyoxometalate (POM), and phosphorus-doped electrochemically reduced graphene oxide (P-ERGO) by electrodeposition technique. The (bdpy)SiW11Ni/GO hybrid nanocomposite was synthesized by a one-pot hydrothermal method and characterized by UV-vis absorption, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis, thermogravimetric-differential thermal analysis (TGA/DTA), and transmission electron microscopy (TEM). The morphology, electrochemical performance, and electrocatalysis activity of the nanocomposite modified glassy carbon electrode ((bdpy)SiW11Ni/P-ERGO/GCE) were analyzed by field emission scanning electron microscopy (FE-SEM) coupled with energy-dispersive X-ray spectroscopy (EDS), cyclic voltammetry (CV), square wave voltammetry (SWV), and amperometry, respectively. Under the optimum experimental conditions, the as-prepared sensor showed high sensitivity of 28.1 μA mM−1 and good selectivity for iodate (IO3−) reduction, enabling the detection of IO3− within a linear range of 10–1600 μmol L−1 (R2 = 0.9999) with a limit of detection (LOD) of 0.47 nmol L−1 (S/N = 3). The proposed electrochemical sensor exhibited good reproducibility, and repeatability, high stability, and excellent anti-interference ability, as well as analytical performance in mineral water, tap water, and commercial edible iodized salt which might provide a capable platform for the determination of IO3−. Constructing a sensitive electrochemical sensor based on (bdpy)SiW11Ni/P-ERGO/GCE for IO3− detection at the nanomolar level with noticeable selectivity.![]()
Collapse
Affiliation(s)
- Minoo Sharifi
- Department of Chemistry
- Faculty of Sciences
- University of Hormozgan
- Bandar Abbas 79161-93145
- Iran
| | - Somayeh Dianat
- Department of Chemistry
- Faculty of Sciences
- University of Hormozgan
- Bandar Abbas 79161-93145
- Iran
| | - Amin Hosseinian
- Department of Chemistry
- Faculty of Sciences
- University of Hormozgan
- Bandar Abbas 79161-93145
- Iran
| |
Collapse
|
6
|
Lai SY, Ng KH, Cheng CK, Nur H, Nurhadi M, Arumugam M. Photocatalytic remediation of organic waste over Keggin-based polyoxometalate materials: A review. CHEMOSPHERE 2021; 263:128244. [PMID: 33297191 DOI: 10.1016/j.chemosphere.2020.128244] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/17/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Photocatalytic remediation of industrial water pollution has courted intense attention lately due to its touted green approach. In this respect, Keggin-based polyoxometalates (POMs) as green solid acids in photocatalytic reaction possess superior qualities, viz. unique photoinduced charge-transfer properties, strong photooxidative-photoreductive ability, high chemical and thermal stability, and so forth. Unfortunately, it suffers from a large bandgap energy, low specific surface area, low recoverability, and scarce utilization in narrow absorption range. Therefore, the pollutant degradation performance is not satisfactory. Consequently, multifarious research to enhance the photocatalytic performance of Keggin-based POMs were reported, viz. via novel modifications and functionalizations through a variety of materials, inclusive of, inter alia, metal oxides, transition metals, noble metals, and others. In order to advocate this emerging technology, current review work provides a systematic overview on recent advancement, initiated from the strategized synthetic methods, followed by hierarchical enhancement and intensification process, at the same time emphasizes on the fundamental working principles of Keggin-based POM nanocomposites. By reviewing and summarizing the efforts adopted global-wide, this review is ended with providing useful outlooks for future studies. It is also anticipated to shed light on producing Keggin-based POM nanocomposites with breakthrough visible- and solar-light-driven photocatalytic performance against recalcitrant organic waste.
Collapse
Affiliation(s)
- Sin Yuan Lai
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Kim Hoong Ng
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, PR China; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Hadi Nur
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, UTM, Skudai, Johor, 81310, Malaysia; Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Malang, 65145, Indonesia
| | - Mukhamad Nurhadi
- Department of Chemical Education, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia
| | - Mahashanon Arumugam
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan, 43900, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Department of Petroleum Technology and Alternative Fuels, Faculty of Environmental Technology, UCT, Prague, Technická 5, 160 00, Praha 6-Dejvice, Czechia
| |
Collapse
|
7
|
Cruz H, Gomes N, Mirante F, Balula SS, Branco LC, Gago S. Polyoxometalates‐Based Ionic Liquids (POMs‐ILs) for Electrochemical Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.202002976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hugo Cruz
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte da Caparica Portugal
| | - Neide Gomes
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte da Caparica Portugal
| | - Fatima Mirante
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto 4169-007 Porto Portugal
| | - Salete S. Balula
- LAQV-REQUIMTE Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto 4169-007 Porto Portugal
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte da Caparica Portugal
| | - Sandra Gago
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa 2829-516 Monte da Caparica Portugal
| |
Collapse
|
8
|
Selective oxidation of organosulfurs with a sandwich-type polyoxometalate/hydrogen peroxide system. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Shi SK, Kang RQ, Li JL, Bai Y, Dang DB. A Keggin-Type Tungstovanadate-Based Hybrid Compound: Synthesis, Crystal Structure, and Electrocatalytic Oxidation of Ascorbic Acid. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420070064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Pang T, Zhou Z, Li D, Liu H, Zhang Z, Qi L, Song CY, Gao GG, Lv Y. Crystal Structure and Reversible Photochromism of Pb(II)-N
,N
-Dimethylformamide Modified Keggin-Type Polyoxometalates. CRYSTAL RESEARCH AND TECHNOLOGY 2019. [DOI: 10.1002/crat.201900153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tao Pang
- College of Pharmacy; Jiamusi University; Jiamusi 154007 China
| | - Zhen Zhou
- Shandong HIGGSE New Energy Co. Ltd.; Laiwu District 271114 China
| | - Dong Li
- Shandong HIGGSE New Energy Co. Ltd.; Laiwu District 271114 China
| | - Hong Liu
- College of Pharmacy; Jiamusi University; Jiamusi 154007 China
- School of Materials Science and Engineering; University of Jian; Jinan 250022 China
| | - Zhanshu Zhang
- Shandong HIGGSE New Energy Co. Ltd.; Laiwu District 271114 China
| | - Liwei Qi
- Shandong HIGGSE New Energy Co. Ltd.; Laiwu District 271114 China
| | - Chao-Yu Song
- College of Pharmacy; Jiamusi University; Jiamusi 154007 China
| | - Guang-Gang Gao
- College of Pharmacy; Jiamusi University; Jiamusi 154007 China
- School of Materials Science and Engineering; University of Jian; Jinan 250022 China
| | - Yuguang Lv
- College of Pharmacy; Jiamusi University; Jiamusi 154007 China
| |
Collapse
|
11
|
Dianat S, Hatefi-Mehrjardi A, Mahmoodzadeh K, Kakhki S. Electrocatalytic determination of Cd2+ and Pb2+ using an l-cysteine tungstophosphate self-assembled monolayer on a polycrystalline gold electrode. NEW J CHEM 2019. [DOI: 10.1039/c9nj03459e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Constructing a sensitive electrochemical sensor based on (Cys)PW for Cd2+ and Pb2+ detection at the nanomolar level with remarkable selectivity.
Collapse
Affiliation(s)
- Somayeh Dianat
- Department of Chemistry
- Faculty of Sciences
- University of Hormozgan
- Bandar Abbas 71961
- Iran
| | - Abdolhamid Hatefi-Mehrjardi
- Department of Chemistry
- Payame Noor University (PNU)
- Tehran
- Iran
- Department of Chemistry & Nanoscience and Nanotechnology Research Laboratory (NNRL)
| | - Kourosh Mahmoodzadeh
- Department of Chemistry
- Payame Noor University (PNU)
- Tehran
- Iran
- Department of Chemistry & Nanoscience and Nanotechnology Research Laboratory (NNRL)
| | - Somayeh Kakhki
- Department of Public Health
- Torbat Heydariyeh University of Medical Sciences
- Torbat Heydariyeh
- Iran
| |
Collapse
|