1
|
Wang T, Qin Y, Wang JY, Xu Y, Guo J, Zhu Y, Zhang H, Qin Y, Qi ZQ, Fu H, Liu YJ, Cui M, Zhou K. Less Is More: Donor Engineering of a Stable Molecular Dye for Bioimaging in the NIR-IIb Window. J Med Chem 2025; 68:3782-3794. [PMID: 39829110 DOI: 10.1021/acs.jmedchem.4c02866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Fluorescence molecular imaging aims to enhance clarity in the region of interest, particularly in the near-infrared IIb window (NIR-IIb, 1500-1700 nm). To achieve this, we developed a novel small-molecule dye, named DA-5, based on classic cyanine dyes (heptamethine or pentamethine is essential for wavelengths beyond 1000 nm). By reducing excessive polymethine to a single methine and disrupting symmetry to form an asymmetric donor-π-acceptor (D-π-A) architecture, we enhanced the donor's electron-donating capability, yielding emission at 1088 nm. DA-5 exhibits superior properties, including excellent chemo- and photostability, resistance against solvatochromism-caused quenching, and antiaggregation in aqueous solution. With a large Stokes shift (241 nm) and high brightness (321 M-1 cm-1), DA-5 enables high-performance imaging of the lymphatic system, intestinal vessels, whole-body angiography, and cerebral and hindlimb microvasculature in NIR-IIb. This molecular design strategy offers a promising platform for advancing in vivo biophotonics.
Collapse
Affiliation(s)
- Tianbao Wang
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Yufei Qin
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin-Yu Wang
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yihan Xu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Jiaming Guo
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yiling Zhu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Huiyan Zhang
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yujie Qin
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ya-Jun Liu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Mengchao Cui
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Kaixiang Zhou
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Li T, Zhang Y, Wu F, Chen G, Li C, Wang Q. Rational Design of NIR-II Ratiometric Fluorescence Probes for Accurate Bioimaging and Biosensing In Vivo. SMALL METHODS 2025; 9:e2400132. [PMID: 38470209 DOI: 10.1002/smtd.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Intravital fluorescence imaging in the second near-infrared window (NIR-II, 900-1700 nm) has emerged as a promising method for non-invasive diagnostics in complex biological systems due to its advantages of less background interference, high tissue penetration depth, high imaging contrast, and sensitivity. However, traditional NIR-II fluorescence imaging, which is characterized by the "always on" or "turn on" mode, lacks the ability of quantitative detection, leading to low reproducibility and reliability during bio-detection. In contrast, NIR-II ratiometric fluorescence imaging can realize quantitative and reliable analysis and detection in vivo by providing reference signals for fluorescence correction, generating new opportunities and prospects during in vivo bioimaging and biosensing. In this review, the current design strategies and sensing mechanisms of NIR-II ratiometric fluorescence probes for bioimaging and biosensing applications are systematically summarized. Further, current challenges, future perspectives and opportunities for designing NIR-II ratiometric fluorescence probes are also discussed. It is hoped that this review can provide effective guidance for the design of NIR-II ratiometric fluorescence probes and promote its adoption in reliable biological imaging and sensing in vivo.
Collapse
Affiliation(s)
- Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
3
|
Cao M, Wang C, Wang F, Zou W, Yu B, Cong H, Shen Y. Synthesis on NIR-II Multifunctional Imaging and Photothermal Therapy of a Novel Water-Soluble Molecule. Adv Healthc Mater 2024; 13:e2304564. [PMID: 38552668 DOI: 10.1002/adhm.202304564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Indexed: 04/05/2024]
Abstract
The synthesis of water-soluble symmetric molecules with donor-acceptor-donor (D-A-D) structure is reported. The compound is connected by π bridge with 2-bromofluorene external polyethylene glycol 2000 as the shielding unit, and donor component and pyrrolopyrrole (DPP) as the acceptor unit. The D-A-D double donor fluorescent molecule P2-DPP is obtained by coupling reaction. The absorption peak and emission peak of the fluorescent molecule P2-DPP are 600 and 1020 nm, respectively. It has potential excellent imaging characteristics. It does not need to use nanoparticles formed by the DSPE-MPEG amphiphilic block to form micelles. The quantum yield reaches 0.6% and the penetration depth can reach 10 mm. The chemical is capable of achieving liver and renal metabolism. It has a good application prospect in the photothermal therapy of mouse tumors and realizes the integration of biological diagnosis and treatment.
Collapse
Affiliation(s)
- Mengyu Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Chang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Wentao Zou
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
4
|
Zhu H, Ding X, Wang C, Cao M, Yu B, Cong H, Shen Y. Preparation of rare earth-doped nano-fluorescent materials in the second near-infrared region and their application in biological imaging. J Mater Chem B 2024; 12:1947-1972. [PMID: 38299679 DOI: 10.1039/d3tb01987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Second near-infrared (NIR-II) fluorescence imaging (FLI) has gained widespread interest in the biomedical field because of its advantages of high sensitivity and high penetration depth. In particular, rare earth-doped nanoprobes (RENPs) have shown completely different physical and chemical properties from macroscopic substances owing to their unique size and structure. This paper reviews the synthesis methods and types of RENPs for NIR-II imaging, focusing on new methods to enhance the luminous intensity of RENPs and multi-band imaging and multi-mode imaging of RENPs in biological applications. This review also presents an overview of the challenges and future development prospects based on RENPs in NIR-II regional bioimaging.
Collapse
Affiliation(s)
- Hetong Zhu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Xin Ding
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Chang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Mengyu Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
5
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
|
7
|
Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Lou KL, Wang PY, Yang RQ, Gao YY, Tian HN, Dang YY, Li Y, Huang WH, Chen M, Liu XL, Zhang GJ. Fabrication of tumor targeting rare-earth nanocrystals for real-time NIR-IIb fluorescence imaging-guided breast cancer precise surgery. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102555. [PMID: 35390525 DOI: 10.1016/j.nano.2022.102555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
The near-infrared fluorescence imaging has been integrated into the operating room to guide tumor resection, potentially reducing the positive margin rates in breast-conserving surgery (BCS). Relative to the widely used first near-infrared fluorescence imaging, imaging in the second near-infrared (NIR-II) region possesses higher contrast and deeper tissue penetration, particularly in the NIR-IIb window, offering many new opportunities for imaging-guided BCS. Here, we fabricated the c(RGDfC) functionalized erbium-based rare-earth nanoparticles (ErNPs@cRGD) with superior optical property in NIR-IIb region. Owing to deeper tissue penetration and efficient tumor targeting, ErNPs@cRGD-based NIR-IIb fluorescence imaging achieved enhanced signal-to-background ratios in tumor visualization, which was able to guide more complete tumor resection, identify multiple microtumors and distinguish malignant lesions from normal tissues in various mice models. Based on these, this NIR-IIb imaging strategy for surgical navigation can significantly reduce positive margin rates and improve prognosis, laying a foundation for the clinical resection of breast cancer.
Collapse
Affiliation(s)
- Kang-Liang Lou
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Pei-Yuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Rui-Qin Yang
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yi-Yang Gao
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hai-Na Tian
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, Fujian, China
| | - Yong-Ying Dang
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yang Li
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Wen-He Huang
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Min Chen
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiao-Long Liu
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
| | - Guo-Jun Zhang
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
9
|
Zhan W, Zhao B, Cui X, Liu J, Xiao X, Xu Y, She S, Hou C, Guo H. PDA modified NIR-II NaEr 0.8Yb 0.2F 4nanoparticles with high photothermal effect. NANOTECHNOLOGY 2022; 33:385102. [PMID: 35609524 DOI: 10.1088/1361-6528/ac72b3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Polydopamine (PDA)-modified NaEr0.8Yb0.2 F4nanoparticles were synthesized, with strong NIR-II emission, quantum yield of 29.63%, and excellent photothermal performance. Crystal phases and microstructures are characterized. Optical properties such as absorption, NIR-II emission, and light stability are studied, and the luminescence mechanism is discussed in detail. Key factors in NIR-II imaging were evaluated in fresh pork tissue, including penetration depth, spatial resolution, and signal-to-noise ratio (SNR). A high penetration depth of 5 mm and a high spatial resolution of 1 mm were detected. Mice are imaged in vivo afterintravenousinjection. Due to the accumulation of nanoparticles in the liver, high image quality with an SNR of 5.2 was detected in the abdomen of KM mice with hair. The photothermal conversion effect of PDA-modified NPs was twice that of the reported material. These NIR-II nanoparticles have superior optical properties, high photothermal efficiency and low cytotoxicity, and are potential fluorescent probes for further disease diagnosis and treatment.
Collapse
Affiliation(s)
- Weifan Zhan
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bin Zhao
- Department of Sports Medicine, Fourth Medical Center, General Hospital of the Chinese People's Liberation Army, Chinese, Beijing, People's Republic of China
| | - Xiaoxia Cui
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Junsong Liu
- Xi'an Department of Otolaryngology, Head and Neck Surgery, First Affiliated Hospital of Jiaotong University, Xi'an Shanxi, People's Republic of China
| | - Xusheng Xiao
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yantao Xu
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shengfei She
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chaoqi Hou
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haitao Guo
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
10
|
Wei Z, Liu Y, Li B, Li J, Lu S, Xing X, Liu K, Wang F, Zhang H. Rare-earth based materials: an effective toolbox for brain imaging, therapy, monitoring and neuromodulation. LIGHT, SCIENCE & APPLICATIONS 2022; 11:175. [PMID: 35688804 PMCID: PMC9187711 DOI: 10.1038/s41377-022-00864-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Brain diseases, including tumors and neurodegenerative disorders, are among the most serious health problems. Non-invasively high-resolution imaging methods are required to gain anatomical structures and information of the brain. In addition, efficient diagnosis technology is also needed to treat brain disease. Rare-earth based materials possess unique optical properties, superior magnetism, and high X-ray absorption abilities, enabling high-resolution imaging of the brain through magnetic resonance imaging, computed tomography imaging, and fluorescence imaging technologies. In addition, rare-earth based materials can be used to detect, treat, and regulate of brain diseases through fine modulation of their structures and functions. Importantly, rare-earth based materials coupled with biomolecules such as antibodies, peptides, and drugs can overcome the blood-brain barrier and be used for targeted treatment. Herein, this review highlights the rational design and application of rare-earth based materials in brain imaging, therapy, monitoring, and neuromodulation. Furthermore, the development prospect of rare-earth based materials is briefly introduced.
Collapse
Affiliation(s)
- Zheng Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shuang Lu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Lv R, Raab M, Wang Y, Tian J, Lin J, Prasad PN. Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Cai L, Wang Z, Lin B, Liu K, Wang Y, Yuan Y, Tao X, Lv R. Rare earth nanoparticles for sprayed and intravenous NIR II imaging and photodynamic therapy of tongue cancer. NANOSCALE ADVANCES 2022; 4:2224-2232. [PMID: 36133451 PMCID: PMC9418583 DOI: 10.1039/d2na00197g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 06/16/2023]
Abstract
In this research, rare earth nanoparticles coupled with dihydroartemisinin (DHA) and a targeted antibody (RENP-DHA-Cap) for sprayed NIR II imaging and photodynamic therapy (PDT) of tongue cancer were designed. Genetic algorithms combined with combinatorial chemistry were proposed and successfully achieved in a single optimized luminescent phosphor with enhanced NIR II and high upconversion luminescence (UCL) under a NIR laser of wavelength 980 nm or/and 808 nm. In particular, T1 magnetic resonance imaging (MRI) signals can be adjusted with the Gd ion concentration. In combination with the targeted antibody of capmatinib (Cap), precise NIR II imaging for in situ tongue cancer by a simple spray method can be achieved. Most importantly, NIR II imaging and PDT treatment can be realized with RENP-DHA-capmatinib injected intravenously. This orthogonal theranostic mode with precise diagnosis under 808 nm and targeted effective treatment under 980 nm may promote tongue cancer theranostics.
Collapse
Affiliation(s)
- Lingling Cai
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University Shanghai 200011 China
| | - Zhan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| | - Kaikai Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| | - Ying Yuan
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University Shanghai 200011 China
| | - Xiaofeng Tao
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University Shanghai 200011 China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University Xi'an Shaanxi 710071 China
| |
Collapse
|
13
|
Huang J, Yan L, Liu S, Tao L, Zhou B. Expanding the toolbox of photon upconversion for emerging frontier applications. MATERIALS HORIZONS 2022; 9:1167-1195. [PMID: 35084000 DOI: 10.1039/d1mh01654g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photon upconversion in lanthanide-based materials has recently shown compelling advantages in a wide range of fields due to their exceptional anti-Stokes luminescence performances and physicochemical properties. In particular, the latest breakthroughs in the optical manipulation of photon upconversion, such as the precise tuning of switchable emission profiles and lifetimes, open up new opportunities for diverse frontier applications from biological imaging to therapy, nanophotonics and three-dimensional displays. A summary and discussion on the recent progress can provide new insights into the fundamental understanding of luminescence mechanisms and also help to inspire new upconversion concepts and promote their frontier applications. Herein, we present a review on the state-of-the-art progress of lanthanide-based upconversion materials, focusing on the newly emerging approaches to the smart control of upconversion in aspects of light intensity, colors, and lifetimes, as well as new concepts. The emerging scientific and technological discoveries based on the well-designed upconversion materials are highlighted and discussed, along with the challenges and future perspectives. This review will contribute to the understanding of the fundamental research of photon upconversion and further promote the development of new classes of efficient upconversion materials towards diversities of frontier applications in the future.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
14
|
Ma Y, Wang Y, Hui X, Lin B, Yuan Y, Tao X, Lv R. Dual-molecular targeted NIR II probe with enhanced response for head and neck squamous cell carcinoma imaging. NANOTECHNOLOGY 2022; 33:225101. [PMID: 35189605 DOI: 10.1088/1361-6528/ac56f9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
In this research, a fluorescent probe of 7-(diethylamine) coumarin derivatives with multiple binding sites to detect biothiols in tumor cell with strong NIR II luminescencein vivowas synthesized. The biothiols include cysteine (Cys) and glutathione (GSH) in tumor cells, and the tumor-response luminescence was proved by the cell experiment. Importantly, the monolayer functional phospholipid (DSPE-PEG) coating and aggregation induced emission (AIE) dye of TPE modification made the probe have good stability and biocompatibility with little luminescence quenching in aqueous phase, which was proved byin vitroandin vivoexperiments. The final aqueous NIR II probe combined with bevacizumab (for VEGF recognition in the cancer cells) and Capmatinib (for Met protein recognition in the cancer cells) has stronger targeted imaging on head and neck squamous cell carcinoma (HNSCC) cancer with intravenous injection. This GSH/Cys detection in the tumor cell and strong dual-molecular NIR II bioimagingin vivomay provide new strategy to tumor detection.
Collapse
Affiliation(s)
- Yaqun Ma
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Xin Hui
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Ying Yuan
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Xiaofeng Tao
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, People's Republic of China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| |
Collapse
|
15
|
Zhang X, He S, Ding B, Qu C, Chen H, Sun Y, Zhang R, Lan X, Cheng Z. Synergistic strategy of rare-earth doped nanoparticles for NIR-II biomedical imaging. J Mater Chem B 2021; 9:9116-9122. [PMID: 34617547 DOI: 10.1039/d1tb01640g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Featuring simultaneous multicolor imaging for multiple targets, a synergistic strategy has become promising for fluorescence imaging applications. Visible and first near infrared (NIR-I, 700-900 nm) fluorophores have been explored for multicolor imaging to achieve good multi-target capacity, but they are largely hampered by the narrow imaging bands available (400-900 nm, bandwidth 500 nm), the broad emission spectra of many fluorophores, shallow tissue penetration and scattering loss. With attractive characteristic emission peaks in the second NIR window (NIR-II, 1000-1700 nm), a narrow emission spectrum, and deeper tissue penetration capability, rare-earth doped nanoparticles (RENPs) have been considered by us to be outstanding candidates for multicolor bioimaging. Herein, two RENPs, NaYF4:Yb20Er2@NaYF4 and NaYF4:Nd5@NaYF4, were prepared and modified with polyethylene glycol (PEG) to explore simultaneous imaging in the NIR-IIb (1530 nm, under 980 nm laser excitation) and the NIR-II (1060 nm, under 808 nm laser excitation) windows. The PEGylated-RENPs (RENPs@PEG) were able to simultaneously visualize the circulatory system, trace the lymphatic system, and evaluate the skeletal system. Our study demonstrates that RENPs have high synergistic imaging capability in multifunctional biomedical applications using their NIR-II fluorescence. Importantly, the two RENPs@PEG are complementary to each other for higher temporal resolution in NaYF4:Nd5@NaYF4@PEG and higher spatial resolution in NaYF4:Yb20Er2@NaYF4@PEG, which may provide more comprehensive and accurate imaging diagnosis. In conclusion, RENPs are highly promising nanomaterials for multicolor imaging in the NIR-II window.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
| | - Shuqing He
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Bingbing Ding
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
| | - Chunrong Qu
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
| | - Hao Chen
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Yu Sun
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
| | - Ruiping Zhang
- Radiology Department, The Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030032, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
16
|
Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chem Rev 2021; 122:209-268. [PMID: 34664951 DOI: 10.1021/acs.chemrev.1c00553] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.
Collapse
Affiliation(s)
- Yishen Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yang Li
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yixuan Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Laboratory of Plant Systematics and Evolutionary Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yanna Pan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mingxia Du
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Siyu Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xue Qiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Jianfeng Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuling Xiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
17
|
Xie N, Hou Y, Wang S, Ai X, Bai J, Lai X, Zhang Y, Meng X, Wang X. Second near-infrared (NIR-II) imaging: a novel diagnostic technique for brain diseases. Rev Neurosci 2021; 33:467-490. [PMID: 34551223 DOI: 10.1515/revneuro-2021-0088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Imaging in the second near-infrared II (NIR-II) window, a kind of biomedical imaging technology with characteristics of high sensitivity, high resolution, and real-time imaging, is commonly used in the diagnosis of brain diseases. Compared with the conventional visible light (400-750 nm) and NIR-I (750-900 nm) imaging, the NIR-II has a longer wavelength of 1000-1700 nm. Notably, the superiorities of NIR-II can minimize the light scattering and autofluorescence of biological tissue with the depth of brain tissue penetration up to 7.4 mm. Herein, we summarized the main principles of NIR-II in animal models of traumatic brain injury, cerebrovascular visualization, brain tumor, inflammation, and stroke. Simultaneously, we encapsulated the in vivo process of NIR-II probes and their in vivo and in vitro toxic effects. We further dissected its limitations and following optimization measures.
Collapse
Affiliation(s)
- Na Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Ya Hou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Shaohui Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xiaopeng Ai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Jinrong Bai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xianrong Lai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
18
|
Wang W, Feng Z, Li B, Chang Y, Li X, Yan X, Chen R, Yu X, Zhao H, Lu G, Kong X, Qian J, Liu X. Er 3+ self-sensitized nanoprobes with enhanced 1525 nm downshifting emission for NIR-IIb in vivo bio-imaging. J Mater Chem B 2021; 9:2899-2908. [PMID: 33725037 DOI: 10.1039/d0tb02728f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Traditional sensitizer (Yb3+ or Nd3+) and activator (Er3+) co-doped lanthanide-based nanoprobes possessing emission of Er3+ at 1525 nm have attracted much attention in NIR-IIb bio-imaging. However, the 1525 nm fluorescence efficiency was not high enough in such co-doped systems due to the serious back energy transfer from the activator to the sensitizer, resulting in a lot of excitation energy loss. Herein, we have designed an efficient NIR-IIb nanoprobe Er3+ self-sensitized NaErF4:0.5%Tm3+@NaLuF4, where substantially all the excitation energy could contribute to Er3+ ions and most energy transfer processes were confined among Er3+ ions, avoiding the energy dissipation by heterogeneous sensitizer ions. The influence of the types of epitaxial heterogeneous shells, the doping effect and optimal doping concentration of Tm3+ ions, as well as the critical shell thickness for obtaining the surface quenching-assisted downshifting emission are systematically investigated to acquire the most efficient 1525 nm luminescence under 800 nm excitation. The quantum yield in the 1500-1700 nm region reached 13.92%, enabling high-resolution through-skull cerebrovascular microscopy imaging and large-depth in vivo physiological dynamic imaging with an extremely low excitation powder density of 35 mW cm-2. The designed nanoprobe can be potentially used for brain science research and clinical diagnosis.
Collapse
Affiliation(s)
- Wang Wang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, FineMechanics and Physics, Chinese Academy of Science, Changchun 130033, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu S, Chen R, Zhang J, Li Y, He M, Fan X, Zhang H, Lu X, Kwok RTK, Lin H, Lam JWY, Qian J, Tang BZ. Incorporation of Planar Blocks into Twisted Skeletons: Boosting Brightness of Fluorophores for Bioimaging beyond 1500 Nanometer. ACS NANO 2020; 14:14228-14239. [PMID: 33001627 DOI: 10.1021/acsnano.0c07527] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The brightness of organic fluorescence materials determines their resolution and sensitivity in fluorescence display and detection. However, strategies to effectively enhance the brightness are still scarce. Conventional planar π-conjugated molecules display excellent photophysical properties as isolated species but suffer from aggregation-caused quenching effect when aggregated owing to the cofacial π-π interactions. In contrast, twisted molecules show high photoluminescence quantum yield (ΦPL) in aggregate while at the cost of absorption due to the breakage in conjugation. Therefore, it is challenging to integrate the strong absorption and high solid-state ΦPL, which are two main indicators of brightness, into one molecule. Herein, we propose a molecular design strategy to boost the brightness through the incorporation of planar blocks into twisted skeletons. As a proof-of-concept, twisted small-molecule TT3-oCB with larger π-conjugated dithieno[3,2-b:2',3'-d]thiophene unit displays superb brightness at the NIR-IIb (1500-1700 nm) than that of TT1-oCB and TT2-oCB with smaller thiophene and thienothiophene unit, respectively. Whole-body angiography using TT3-oCB nanoparticles presents an apparent vessel width of 0.29 mm. Improved NIR-IIb image resolution is achieved for femoral vessels with an apparent width of only 0.04 mm. High-magnification through-skull microscopic NIR-IIb imaging of cerebral vasculature gives an apparent width of ∼3.3 μm. Moreover, the deeply located internal organ such as bladder is identified with high clarity. The present molecular design philosophy embodies a platform for further development of in vivo bioimaging.
Collapse
Affiliation(s)
- Shunjie Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Runze Chen
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Jianquan Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Mubin He
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Xuefeng Lu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
20
|
Li Q, Ding Q, Li Y, Zeng X, Liu Y, Lu S, Zhou H, Wang X, Wu J, Meng X, Deng Z, Xiao Y. Novel small-molecule fluorophores for in vivo NIR-IIa and NIR-IIb imaging. Chem Commun (Camb) 2020; 56:3289-3292. [PMID: 32073036 DOI: 10.1039/c9cc09865h] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Near-infrared fluorescence imaging in the 1000-1700 nm-wavelength window (NIR-II) has exhibited great potential for deep-tissue bioimaging due to its diminished auto-fluorescence, suppressed photo-scattering, deep penetration, and high spatial and temporal resolutions. Various kinds of inorganic nanomaterials have been extensively developed for NIR-IIa (1300-1400 nm) and NIR-IIb (1500-1700 nm) bioimaging. However, the development of small-molecule NIR-IIa and NIR-IIb fluorophores is still in its infancy. Herein, we designed and synthesized a novel NIR-II organic aggregation-induced emission (AIE) fluorophore (HQL2) with a fluorescence tail extending into the NIR-IIa and NIR-IIb region based on our previous reported skeleton Q4. The encapsulated NIR-II AIE nanoparticles (HQL2 dots) exhibited water solubility and biocompatibility, and high brightness for NIR-IIa and NIR-IIb vascular imaging in vivo, a first for NIR-II AIE dots.
Collapse
Affiliation(s)
- Qianqian Li
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China. and College of Science, Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Tibet University, Lasa, 850000, China
| | - Qihang Ding
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Yang Li
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Xiaodong Zeng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Yishen Liu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Siyu Lu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Hui Zhou
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Xiaofei Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Center for Experimental Basic Medical Education, Wuhan 430071, China
| | - Junzhu Wu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Center for Experimental Basic Medical Education, Wuhan 430071, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China. and College of Science, Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Tibet University, Lasa, 850000, China
| |
Collapse
|
21
|
Wu L, Hu J, Zou Q, Lin Y, Huang D, Chen D, Lu H, Zhu H. Synthesis and optical properties of a Y 3(Al/Ga) 5O 12:Ce 3+,Cr 3+,Nd 3+ persistent luminescence nanophosphor: a promising near-infrared-II nanoprobe for biological applications. NANOSCALE 2020; 12:14180-14187. [PMID: 32602515 DOI: 10.1039/d0nr03269g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Persistent luminescence nanophosphors (PLNPs) emitting in the second near-infrared window (1000-1700 nm, NIR-II) are emerging as one promising class of in vivo bio-imaging agents due to their unique advantages including non-autofluorescence and low optical scattering in tissues. Currently, it remains a great challenge to synthesize nanosized lanthanide-doped inorganic NIR-II phosphors with a good persistent luminescence performance. Herein, we present a salt microemulsion method for synthesizing Ce3+, Cr3+, Nd3+ codoped Y3(Al/Ga)5O12 nanocrystals, which generate multi-wavelength persistent luminescence in the visible (∼508 nm, 5d1→ 4f of Ce3+), the first near-infrared window (∼890 nm, 4F3/2→4I9/2 of Nd3+) and NIR-II (∼1063 nm, 4F3/2→4I11/2 of Nd3+) regions. Under illumination of a 410 nm diode (3 W) for 10 min, the observed duration time of NIR-II persistent luminescence is as long as 60 min at room temperature. Moreover, the persistent luminescence can be excited efficiently by multiple excitation sources including a blue diode, white LEDs and an X-ray generator, which is crucial for deep tissue imaging applications. By comparing the penetration depth between NIR-I and NIR-II persistent luminescence through chicken breast, we prove that NIR-II photons exhibit a deeper optical penetration length (3.9 mm) than that of the NIR-I ones (2.5 mm). In addition, the NIR signals can still be detected 3 min after ceasing the excitation source by a small animal imaging system (InGaAs detector) when the thickness of the covering chicken breast is 20 mm. These results show great promise for Y3(Al/Ga)5O12:Ce3+,Cr3+,Nd3+ nanocrystals as a PLNP for bio-imaging applications with deep penetration depth and a high signal-to-noise ratio.
Collapse
Affiliation(s)
- Luyan Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yu Z, Eich C, Cruz LJ. Recent Advances in Rare-Earth-Doped Nanoparticles for NIR-II Imaging and Cancer Theranostics. Front Chem 2020; 8:496. [PMID: 32656181 PMCID: PMC7325968 DOI: 10.3389/fchem.2020.00496] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Fluorescence imaging in the second near infrared window (NIR-II, 1,000-1,700 nm) has been widely used in cancer diagnosis and treatment due to its high spatial resolution and deep tissue penetration depths. In this work, recent advances in rare-earth-doped nanoparticles (RENPs)-a novel kind of NIR-II nanoprobes-are presented. The main focus of this study is on the modification of RENPs and their applications in NIR-II in vitro and in vivo imaging and cancer theranostics. Finally, the perspectives and challenges of NIR-II RENPs are discussed.
Collapse
Affiliation(s)
| | | | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
23
|
Deng Z, Huang J, Xue Z, Jiang M, Li Y, Zeng S. A general strategy for designing NIR-II emissive silk for the in vivo monitoring of an implanted stent model beyond 1500 nm. J Mater Chem B 2020; 8:4587-4592. [PMID: 32348399 DOI: 10.1039/c9tb02685a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Silk fibroin-based materials spun by silkworms present excellent biocompatible and biodegradable properties, endowing them with broad applications for use in in vivo implanted devices. Therefore, it is highly desirable to explore functionalized silk with additional optical bioimaging abilities for the direct in situ monitoring of the status of implanted devices in vivo. Herein, a new type of silk material with a second near-infrared (NIR-II, 1000-1700 nm) emission is explored for the real-time observation of a biological stent model using a general route of feeding larval silkworms with lanthanide-based NaYF4:Gd3+/Yb3+/Er3+@SiO2 nanocrystals. After being fed lanthanide nanocrystals, the silk spun by silkworms shows efficient NIR-II emission beyond 1500 nm. Moreover, NIR-II bio-imaging guided biological stent model monitoring presents a superior signal-to-noise (S/N) ratio compared to the traditional optical imaging by utilizing the upconversion (UC) region. These findings open up the possibility of designing NIR-II optically functionalized silk materials for highly sensitive and deep-tissue monitoring of the in vivo states of the implanted devices.
Collapse
Affiliation(s)
- Zhiming Deng
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, 410081, P. R. China.
| | | | | | | | | | | |
Collapse
|
24
|
Zian W, Yang L, Peng W, Yifei J, Min J. Small molecular interaction-based fluorescence enhancement for second near-infrared imaging. Nanomedicine (Lond) 2020; 15:115-129. [DOI: 10.2217/nnm-2019-0233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: This study described a new strategy to enhance second near-infrared (NIR-II) fluorescence intensity. Materials & methods: NIR-II liposomes were prepared by thin film hydration method and their fluorescence properties were evaluated. The efficacy of the optimized liposome was then evaluated in vivo with low dose and irradiation. Results: Indocyanine green-IR1061 liposome exhibited higher fluorescence intensity (∼fourfold than IR1061 liposome) with the red-shifted emission. The intensity of indocyanine green-IR1061 cationic liposome was enhanced to approximately tenfold, which allowed us to perform angiography with lower doses and less exposure time. Conclusion: We report a new and efficient way to enhance NIR-II fluorescence intensity. This could be used to acquire high temporal resolution and signal-to-background ratio fluorescence imaging.
Collapse
Affiliation(s)
- Wang Zian
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Liu Yang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Wang Peng
- Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, PR China
- Department of Biomedical Engineering,School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jiang Yifei
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Ji Min
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, PR China
| |
Collapse
|
25
|
Xu H, Liu R, Zhu Y, Li J, Wan C, Zhang H, Ouyang C, Zhong S. An Sc-based coordination polymer with concaved superstructures: preparation, formation mechanism, conversion, and their electrochemistry properties. CrystEngComm 2020. [DOI: 10.1039/d0ce00086h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scandium-based coordination polymer octahedrons with concaved surfaces have been fabricated. The formation mechanism was also investigated. Sc2O3 octahedrons were obtained after simple calcination in a N2 atmosphere.
Collapse
Affiliation(s)
- Hualan Xu
- Analytical and Testing Center
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Ran Liu
- Research Center for Ultrafine Powder Materials
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Yongmei Zhu
- Analytical and Testing Center
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Jinjiang Li
- Analytical and Testing Center
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Changfeng Wan
- Analytical and Testing Center
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Hang Zhang
- Research Center for Ultrafine Powder Materials
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Chuying Ouyang
- Department of Physics
- Laboratory of Computational Materials Physics
- Jiangxi Normal University
- Nanchang
- P.R. China
| | - Shengliang Zhong
- Research Center for Ultrafine Powder Materials
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- China
| |
Collapse
|
26
|
Li Y, Liu Y, Li Q, Zeng X, Tian T, Zhou W, Cui Y, Wang X, Cheng X, Ding Q, Wang X, Wu J, Deng H, Li Y, Meng X, Deng Z, Hong X, Xiao Y. Novel NIR-II organic fluorophores for bioimaging beyond 1550 nm. Chem Sci 2020. [DOI: 10.1039/c9sc06567a] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel NIR-II organic fluorophores were designed and synthesized using an AIE and highly twisted donor–acceptor distortion strategy for bio-imaging beyond 1550 nm.
Collapse
|
27
|
Loo JFC, Chien YH, Yin F, Kong SK, Ho HP, Yong KT. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Liu G, Chen Y, Jia M, Sun Z, Ding B, Shao S, Jiang F, Fu Z, Ma P, Lin J. One-pot synthesis of SiO 2-coated Gd 2(WO 4) 3:Yb 3+/Ho 3+ nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition. Dalton Trans 2019; 48:10537-10546. [PMID: 31214676 DOI: 10.1039/c9dt01841g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rare earth ion-doped fluoride upconversion nanoparticles (UCNPs), emerging as a novel class of probes and drug carriers, exhibit superior promise for bio-applications in diagnostics and treatment on account of their strong luminescence, fine biocompatibility, and high drug loading. However, the fine control and manipulation of particle size and the distribution of rare earth ion-doped oxides has remained an insurmountable challenge to date. In this work, we construct and synthesize silica-coated Gd2(WO4)3:Yb3+/Ho3+ nanoparticles by one-pot co-precipitation, with uniform distribution (∼130 nm) and enhanced yellow fluorescence. Particularly, the nanoparticles not only possess outstanding temperature sensing performance at biological temperatures in water by utilizing the fluorescence intensity ratio (FIR) method, but also allow a further serviceable contrast effect in vitro and in vivo based on the prominent T1-weighted magnetic resonance (MR) signal of Gd3+. Compared with cisplatin and platinum(iv) (DSP), the Gd2(WO4)3@SiO2 nanoparticles functionalized with DSP (Gd2(WO4)3@SiO2-Pt-PEG) exert higher lethality against CT26 cells and significantly inhibit the growth of tumors at the same concentration of Pt. This effect occurs through the greater level of cell endocytosis. The lethality value of the latter is 10 times higher than the former after the same length of time according to inductively coupled plasma-mass spectrometry (ICP-MS) results. In short, the monodisperse and strongly fluorescent Gd2(WO4)3@SiO2-Pt-PEG nanoparticles are endowed with dual-mode imaging, temperature sensing and anticancer functions, which provide a significant guide for synthesis and bio-application of lanthanide ion-doped oxides.
Collapse
Affiliation(s)
- Guofeng Liu
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China. and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Yeqing Chen
- School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Mochen Jia
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
| | - Zhen Sun
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Shuai Shao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Fan Jiang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zuoling Fu
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
29
|
Wang CX, Gao ZY, Wang X, Ke C, Zhang Z, Zhang CJ, Fu LM, Wang Y, Zhang JP. Noninvasive and real-time pharmacokinetics imaging of polymeric nanoagents in the thoracoepigastric vein networks of living mice. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31222991 PMCID: PMC6977018 DOI: 10.1117/1.jbo.24.6.066009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Noninvasive and real-time visualization of the thoracoepigastric veins (TVs) of living mice was demonstrated by using two-photon excitation (TPE) optical imaging with a Eu-luminescent polymeric nanoagent as the angiographic contrast. The spatiotemporal evolution of the polymeric nanoagent in TVs was monitored for up to 2 h by TPE time-resolved (TPE-TR) bioimaging, which is free from the interference of tissue autofluorescence. A wide field-of-view covering the thoracoabdominal region allowed the visualization of the entire TV network with an imaging depth of 1 to 2 mm and a lateral resolution of 80 μm at submillimeter. Detailed analysis of the uptake, transport, and clearance processes of the polymeric nanoagent revealed a clearance time constant of ∼30 min and an apparent clearance efficiency of 80% to 90% for the nanoagent in both axial and lateral TVs. TPE-TR imaging of the dissected internal organs proved that the liver is mainly responsible for the sequestration of the nanoagent, which is consistent with the apparent retention efficiency of liver, ∼32 % , as determined by the real-time in vivo TV imaging. We demonstrate the potency of TPE-TR modality in the pharmacokinetics imaging of the peripheral vascular systems of animal models, which can be beneficial for related nanotheranostics study.
Collapse
Affiliation(s)
- Chuan-Xi Wang
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Zhi-Yue Gao
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Xin Wang
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Can Ke
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Zhuo Zhang
- Renmin University of China, Department of Chemistry, Beijing, China
| | - Chao-Jie Zhang
- Renmin University of China, Department of Chemistry, Beijing, China
| | - Li-Min Fu
- Renmin University of China, Department of Chemistry, Beijing, China
| | - Yuan Wang
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Jian-Ping Zhang
- Renmin University of China, Department of Chemistry, Beijing, China
| |
Collapse
|
30
|
Kaviarasi S, Yuba E, Harada A, Krishnan UM. Emerging paradigms in nanotechnology for imaging and treatment of cerebral ischemia. J Control Release 2019; 300:22-45. [DOI: 10.1016/j.jconrel.2019.02.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
|
31
|
Du S, Wang Y. A broad-range temperature sensor dependent on the magnetic and optical properties of SrF2:Yb3+, Ho3+. CrystEngComm 2019. [DOI: 10.1039/c8ce02027b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co-doped SrF2: Yb3+, Ho3+ nanoparticles (NPs) have been successfully synthesized and upconversion luminescence (UCL) was demonstrated under excitation at 980 nm.
Collapse
Affiliation(s)
- Shanshan Du
- National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology of the National Development and Reform Commission
- Lanzhou University
- Lanzhou
- China
- Key Laboratory for Special Function Materials and Structural Design of the Ministry of the Education
| | - Yuhua Wang
- National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology of the National Development and Reform Commission
- Lanzhou University
- Lanzhou
- China
- Key Laboratory for Special Function Materials and Structural Design of the Ministry of the Education
| |
Collapse
|
32
|
Yan X, Li T, Guo L, Li H, Chen P, Liu M. Multifunctional BiF3:Ln3+ (Ln = Ho, Er, Tm)/Yb3+ nanoparticles: an investigation on the emission color tuning, thermosensitivity, and bioimaging. RSC Adv 2019; 9:10889-10896. [PMID: 35515325 PMCID: PMC9062528 DOI: 10.1039/c9ra01018a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022] Open
Abstract
Pure cubic phase and uniform BiF3:Ln3+ (Ln = Ho, Er, Tm)/Yb3+ nanoparticles (NPs) were prepared by coprecipitation. The growth mechanism of BiF3:2%Er3+/20%Yb3+ NPs was proposed based on evolution analysis of the time-dependent morphology, in which BiF3:2%Er3+/20%Yb3+ was formed through the growth process of “nucleation to crystallization and Ostwald ripening”. The upconversion luminescence (UCL) properties and mechanism of BiF3:Ln3+ (Ln = Ho, Er, Tm)/Yb3+ under dual-wavelength excitation were also systematically investigated. The emission intensity of BiF3:2%Er3+/20%Yb3+ by dual-wavelength excitation (λ = 980 nm + 1550 nm) was 1.49 times more than that excited by 1550 nm or 980 nm individually. Furthermore, the properties of the bright white and multicolor UCL showed that yellow, purple, green, or pinkish light could be observed by controlling the doping concentration of Ln3+ (Ln = Yb, Er, Tm, and Ho), indicating that they had potential applications in backlight sources of color displays and security labeling. The temperature sensitivity of BiF3:2%Er3+/20%Yb3+ exhibited a downward tendency and its max value was about 0.0036 K−1 at 273 K. Cell toxicity tests showed that the UCNPs in phospholipid aqueous solution presented low cytotoxicity. Also, in vivo imaging and X-ray imaging revealed that the BiF3:2%Er3+/20%Yb3+ NPs had deep penetration and high contrast, which meant it could be used as a potential probe and contrast agent in in vivo optical bioimaging. Multifunctional BiF3:Ln3+(Ln = Ho, Er, Tm)/Yb3+ UCLNPs presented better performances in dual-wavelength synergy, thermosensitivity, emission color tuning, and bioimaging.![]()
Collapse
Affiliation(s)
- Xinxin Yan
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- The Key Lab of Chemical Biology and Organic Chemistry of Henan Province
- The Key Lab of Nano-information Materials of Zhengzhou
- Zhengzhou
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- The Key Lab of Chemical Biology and Organic Chemistry of Henan Province
- The Key Lab of Nano-information Materials of Zhengzhou
- Zhengzhou
| | - Linna Guo
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- The Key Lab of Chemical Biology and Organic Chemistry of Henan Province
- The Key Lab of Nano-information Materials of Zhengzhou
- Zhengzhou
| | - Honglei Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- The Key Lab of Chemical Biology and Organic Chemistry of Henan Province
- The Key Lab of Nano-information Materials of Zhengzhou
- Zhengzhou
| | - Penglei Chen
- Beijing National Laboratory for Molecular Science
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| |
Collapse
|