1
|
Jin LX, Wang QM, Zhu SJ, Zhu CL, Sun JJ, Wu SH. Gold nanocube-enhanced SERS biosensor based on heated electrode coupled with exonuclease III-assisted cycle amplification for sensitive detection of flap endonuclease 1 activity. Talanta 2025; 286:127500. [PMID: 39746291 DOI: 10.1016/j.talanta.2024.127500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
The flap endonuclease 1 (FEN1) plays a key role in DNA replication and repair, its aberrant expression is associated with tumor development, so it has been recognized as a promising biomarker for a variety of cancers. Here, a novel "turn on" mode gold nanocube-enhanced surface-enhanced Raman scattering (SERS) biosensor was constructed by combining a heated Au electrode (HAuE), exonuclease III (Exo III)-assisted cycle amplification, and gold nanocube (AuNC)-based SERS enhancement to achieve highly sensitive detection of FEN1 activity. The SERS tag was prepared using the Raman reporter modified on the AuNC surface, and the high electromagnetic field provided by the sharp geometric feature of AuNC greatly enhanced the SERS signal. At the same time, HAuE was used to increase the electrode surface temperature and enhance the FEN1 activity, leading to more trigger DNA being cleaved, which was used to initiate the Exo III-assisted cycle amplification. Taking all these advantages, the proposed method possessed high sensitivity and good selectivity, with a low limit of detection (LOD) of 3.19 × 10-7 U μL-1. In addition, this method was successfully applied to detect FEN1 activity in real cellular extracts.
Collapse
Affiliation(s)
- Lei-Xin Jin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qi-Meng Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shu-Jiao Zhu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Cai-Lian Zhu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jian-Jun Sun
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shao-Hua Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
2
|
Tadi SR, Shenoy AG, Bharadwaj A, C S S, Mukhopadhyay C, Sadani K, Nag P. Recent advances in the design of SERS substrates and sensing systems for (bio)sensing applications: Systems from single cell to single molecule detection. F1000Res 2025; 13:670. [PMID: 40255478 PMCID: PMC12009482 DOI: 10.12688/f1000research.149263.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/22/2025] Open
Abstract
The Raman effect originates from spontaneous inelastic scattering of photons by matter. These photons provide a characteristic fingerprint of this matter, and are extensively utilized for chemical and biological sensing. The inherently lower generation of these Raman scattered photons, do not hold potential for their direct use in sensing applications. Surface enhanced Raman spectroscopy (SERS) overcomes the low sensitivity associated with Raman spectroscopy and assists the sensing of diverse analytes, including ions, small molecules, inorganics, organics, radionucleotides, and cells. Plasmonic nanoparticles exhibit localized surface plasmon resonance (LSPR) and when they are closely spaced, they create hotspots where the electromagnetic field is significantly enhanced. This amplifies the Raman signal and may offer up to a 10 14-fold SERS signal enhancement. The development of SERS active substrates requires further consideration and optimization of several critical features such as surface periodicity, hotspot density, mitigation of sample or surface autofluorescence, tuning of surface hydrophilicities, use of specific (bio) recognition elements with suitable linkers and bioconjugation chemistries, and use of appropriate optics to obtain relevant sensing outcomes in terms of sensitivity, cross-sensitivity, limit of detection, signal-to-noise ratio (SNR), stability, shelf-life, and disposability. This article comprehensively reviews the recent advancements on the use of disposable materials such as commercial grades of paper, textiles, glasses, polymers, and some specific substrates such as blue-ray digital versatile discs (DVDs) for use as SERS-active substrates for point-of-use (POU) sensing applications. The advancements in these technologies have been reviewed and critiqued for analyte detection in resource-limited settings, highlighting the prospects of applications ranging from single-molecule to single-cell detection. We conclude by highlighting the prospects and possible avenues for developing viable field deployable sensors holding immense potential in environmental monitoring, food safety and biomedical diagnostics.
Collapse
Affiliation(s)
- Sai Ratnakar Tadi
- Department of Mechatronics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashwini G Shenoy
- Department of Mechatronics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anirudh Bharadwaj
- Department of Mechatronics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sreelakshmi C S
- Microbiology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | | - Kapil Sadani
- Instrumentation and Control Engineering, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pooja Nag
- Department of Mechatronics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
3
|
Fan M, Brolo AG. Factors that Affect Quantification in Surface-Enhanced Raman Scattering. ACS NANO 2025; 19:3969-3996. [PMID: 39855155 DOI: 10.1021/acsnano.4c15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS. However, even 50 years after its first observation, SERS is still perceived as an unreliable technique for quantification. This perception has precluded the application of SERS in laboratories that rely on consistent quantification (for regulatory purposes, for instance). In this review, we describe some of the aspects that lead to SERS intensity variations and how those challenges were addressed in the 50 years of the technique. The goal is to identify the sources of variations in SERS intensities and then demonstrate that, even with these pitfalls, the technique can be used for quantification when factors such as nature of the substrate, experimental conditions, sample preparation, surface chemistry, and data analysis are carefully considered and tailored for a particular application.
Collapse
Affiliation(s)
- Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
4
|
Zhou C, Xi X, Liu X, Wen W, Zhang X, Wu Z, Wang S. In situ detection of dopamine in single living cells by molecularly imprinted polymer-functionalized nanoelectrodes. Biosens Bioelectron 2024; 257:116332. [PMID: 38677016 DOI: 10.1016/j.bios.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
In situ detection of dopamine (DA) at single-cell level is critical for exploring neurotransmitter-related biological processes and diseases. However, the low content of DA and a variety of distractors with similar oxidation potentials as DA in cells brought great challenges. Here, a sensitive and specific electrochemical nanosensor was proposed for in situ detection of DA in single living cells based on nanodiamond (ND) and molecularly imprinted polymer (MIP)-functionalized carbon fiber nanoelectrode (ND/MIP/CFNE). Due to its excellent electrocatalytic property, ND was modified to the surface of CFNE based on amide bonding. Compared with bare CFNE, ND-modified CFNE can enhance oxidation currents of DA by about 4-fold, improving signal-to-noise ratio and detection sensitivity. MIP was further electropolymerized on the surface of nanoelectrodes to achieve specific capture and recognition of DA, which could avoid the interference of complex matrix and analogs in cells. Taking advantage of the precise positioning capability of a single-cell analyzer and micromanipulator, ND/MIP/CFNE could be precisely inserted into different locations of single cells and monitor oxidation signal of DA. The concentration of DA in the cytoplasm of single pheochromocytoma (PC12) cell was measured to be about 0.4 μM, providing a sensitive and powerful method for single-cell detection. Furthermore, the nanoelectrodes can monitor the fluctuation of intracellular DA under drug stimulation, providing new ideas and methods for new drug development and efficacy evaluation.
Collapse
Affiliation(s)
- Cuiyu Zhou
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xiaoxue Xi
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xiong Liu
- Hubei Ecological Environmental Monitoring Center Station, Wuhan, 430000, PR China
| | - Wei Wen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Xiuhua Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhen Wu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Shengfu Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| |
Collapse
|
5
|
Wang X, Chen C, Chen C, Zuo E, Han S, Yang J, Yan Z, Lv X, Hou J, Jia Z. Novel SERS biosensor for rapid detection of breast cancer based on Ag 2O-Ag-PSi nanochips. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123226. [PMID: 37567026 DOI: 10.1016/j.saa.2023.123226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Ag2O-Ag-PSi (porous silicon) surface-enhanced Raman scattering (SERS) chip was successfully synthesized by electrochemical corrosion, in situ reduction and heat treatment technology. The influence of different heat treatment temperature on SERS performance of the chip is studied. The results show that the chip treated at 300 °C has the best SERS performance. The chip was composed of Ag2O-Ag nano core shell with a diameter of 40-60 nm and porous silicon substrate. Then, the optimized chip was used to perform SERS test on serum samples from 30 healthy volunteers and 30 early breast cancer patients, and the baseline was corrected by LabSpec6 software. Finally, the data were analyzed by principal component analysis combined with t-distributed Stochastic Neighbor Embedding (PCA-t-SNE). The results showed that the accuracy of the improved substrate combined with multivariate statistical method was 98%. The shelf life of the chips exceeded six months due to the presence of the Ag2O shell. This study provides a basis for developing a low-cost rapid and sensitive early screening technology for breast cancer.
Collapse
Affiliation(s)
- Xuehua Wang
- College of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi 830046, China
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| | - Enguang Zuo
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| | - Shibin Han
- College of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jie Yang
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
| | - Ziwei Yan
- College of Software, Xinjiang University, Urumqi 830046, China
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi 830046, China.
| | - Junwei Hou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| | - Zhenhong Jia
- College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
6
|
Choi Y, Jeon CS, Kim KB, Kim HJ, Pyun SH, Park YM. Quantitative detection of dopamine in human serum with surface-enhanced Raman scattering (SERS) of constrained vibrational mode. Talanta 2023; 260:124590. [PMID: 37146455 DOI: 10.1016/j.talanta.2023.124590] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Dopamine (DA) is a crucial neurotransmitter involved in the hormonal, nervous, and vascular systems being considered as an index to diagnose neurodegenerative diseases, including Parkinson's and Alzheimer's disease. Herein, we demonstrate the quantitative sensing of DA using the peak shift in surface-enhanced Raman scattering (SERS) of 4-mercaptophenylboronic acid (4-MPBA), resulting from the concentration of DA. To enable the signal enhancement of Raman scattering, Ag nanostructure was built with one-step gas-flow sputtering. 4-MPBA was then introduced using vapor-based deposition, acting as a reporter molecule for bonding with DA. The gradual peak-shift from 1075.6 cm-1 to 1084.7 cm-1 was observed with the increasing concentration of DA from 1 pM to 100nM. The numerical simulation revealed that DA bonding induced a constrained vibrational mode corresponding to 1084.7 cm-1 instead of a C-S-coupled C-ring in-plane bending mode of 4-MPBA corresponding to 1075.6 cm-1. Proposed SERS sensors depicted reliable DA detection in human serum and good selectivity against other analytes, including glucose, creatinine, and uric acid.
Collapse
Affiliation(s)
- Yongheum Choi
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Chang Su Jeon
- R&D Center, Speclipse Inc., Seongnam-si, Gyeonggi-do, 13461, Republic of Korea
| | - Kwang Bok Kim
- Digital Health Care R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, 31056, Republic of Korea
| | - Hyun-Jong Kim
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Sung Hyun Pyun
- R&D Center, Speclipse Inc., Seongnam-si, Gyeonggi-do, 13461, Republic of Korea.
| | - Young Min Park
- Heat and Surface Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea.
| |
Collapse
|
7
|
Shi XS, Zhao YF, Zhang HY, Xu XF. Rational design of wettability-patterned microchips for high-performance attomolar surface-enhanced Raman detection. Talanta 2023; 258:124417. [PMID: 36931060 DOI: 10.1016/j.talanta.2023.124417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Recent progress in wettability-patterned microchips has facilitated the development of ultra-trace detection in multiple biomedical and food safety fields. The existence of a superhydrophilic trap can realize targeted deposition of the analyte. However, the wetting transition from the Cassie-Baxter state to the Wenzel state usually occurs during evaporation and leads to a larger deposition footprint, which has a strong impact on the detection sensitivity and uniformity. In this paper, we report an integrated design, fabrication, and evaporation strategy to avoid the transition for high-performance attomolar surface-enhanced Raman scattering (SERS) detection. An improved force balance model was proposed to design the microstructures of wettability-patterned microchips, which were fabricated by nanosecond laser direct writing and surface fluorination. The microchips were composed of superhydrophobic micro-grooves and superhydrophilic traps, by which the targeted deposition of Au nanoparticles and rhodamine 6G (R6G) onto a minimal area of ∼70 × 70 μm2 was realized after a two-step heated evaporation. Accordingly, the detection limit was down to the attomolar level (5 × 10-18 M) with SERS enhancement factors (EFs) exceeding 1010. More importantly, the Raman signals showed good uniformity (RSD of 11.5%) for the concentration of 2 × 10-17 M. A good linear relationship was obtained in the quantitative concentration range of 10-12 M to 5 × 10-18 M with a high correlation coefficient (R2) of 0.996. These wettability-patterned microchips exhibit high performance (that is, both good sensitivity and good uniformity) in the detection of ultra-trace molecules in aqueous solutions, avoiding the need for expensive equipment and considerable skill in operations. The proposed strategy could also be applied to other microfluidic devices for rapid and simple analyte pre-concentration.
Collapse
Affiliation(s)
- Xue-Song Shi
- School of Technology, Beijing Forestry University, Beijing, 100083, PR China.
| | - Yu-Fan Zhao
- School of Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Hong-Ye Zhang
- School of Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Xue-Feng Xu
- School of Technology, Beijing Forestry University, Beijing, 100083, PR China
| |
Collapse
|
8
|
Highly sensitive sensing and quantitative detection of sulfate ion with a SERS chip-based on boric acid's Lewis effect. ANAL SCI 2022; 38:1385-1394. [PMID: 35927550 DOI: 10.1007/s44211-022-00169-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/23/2022] [Indexed: 11/01/2022]
Abstract
Based on the Lewis acid's coordination principle, a surface-enhanced Raman scattering (SERS) chip strategy had been developed for the ultrasensitive quantitation of SO42-. Through the immobilization of silver nanoparticles (Ag NPs) and the construction of the boric acid-based sensing unit, the chip system displayed outstanding merits on the direct sensing of SO42-, e.g., simple operation, ultra-high sensitivity, reproducibility, excellent selectivity and specificity. Moreover, an accurate evaluation was obtained by ratiometric calculations on characteristic peaks (1382 and 1070 cm-1) for quantitative detection of SO42-. The detection limit was down to 10 nM. Tap water, beer, and mineral water samples were tested, and high recoveries were achieved (97.12-110.12%). Besides, such SERS chip also displayed strong applicability for the evaluation of SO32-. Therefore, this SERS chip provided a promising idea for the quantification of trace amounts of SO42- and SO32- in the fields of food safety and environmental monitoring.
Collapse
|
9
|
Liu Z, Li S, Yin Z, Zhu Z, Chen L, Tan W, Chen Z. Stabilizing Enzymes in Plasmonic Silk Film for Synergistic Therapy of In Situ SERS Identified Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104576. [PMID: 34989177 PMCID: PMC8867187 DOI: 10.1002/advs.202104576] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Indexed: 05/06/2023]
Abstract
Increasing antibiotic resistance becomes a serious threat to public health. Photothermal therapy (PTT) and antibacterial enzyme-based therapy are promising nonresistant strategies for efficiently killing drug-resistant bacteria. However, the poor thermostability of enzymes in PTT hinders their synergistic therapy. Herein, antibacterial glucose oxidase (GOx) is embedded in a Ag graphitic nanocapsule (Ag@G) arrayed silk film to fabricate a GOx-synergistic PTT system (named silk-GOx-Ag@G, SGA). The SGA system can stabilize GOx by a vitrification process through the restriction of hydrogen bond and rigid β-sheet, and keep the antibacterial activity in the hyperthermal PTT environment. Moreover, the arrayed Ag@G possesses excellent chemical stability due to the protection of graphitic shell, providing stable plasmonic effect for integrating PTT and surface enhanced Raman scattering (SERS) analysis even in the GOx-produced H2 O2 environment. With in situ SERS identification of bacterial intrinsic signals in the mouse wound model, such SGA realizes superior synergistic antibacterial effect on the infected Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus in vivo, while without causing significant biotoxicity. This system provides a therapeutic method with low resistance and in situ diagnosis capability for efficiently eliminating bacteria.
Collapse
Affiliation(s)
- Zhangkun Liu
- Molecular Science and Biomedicine LaboratoryState Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringCollege of BiologyAptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha410082China
| | - Shengkai Li
- Molecular Science and Biomedicine LaboratoryState Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringCollege of BiologyAptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha410082China
| | - Zhiwei Yin
- Molecular Science and Biomedicine LaboratoryState Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringCollege of BiologyAptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha410082China
| | - Zhaotian Zhu
- Molecular Science and Biomedicine LaboratoryState Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringCollege of BiologyAptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha410082China
| | - Long Chen
- Faculty of Science and TechnologyUniversity of MacauTaipaMacau999078China
| | - Weihong Tan
- Molecular Science and Biomedicine LaboratoryState Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringCollege of BiologyAptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha410082China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)Institute of Basic Medicine and CancerChinese Academy of SciencesHangzhou310022China
| | - Zhuo Chen
- Molecular Science and Biomedicine LaboratoryState Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringCollege of BiologyAptamer Engineering Center of Hunan ProvinceHunan UniversityChangsha410082China
| |
Collapse
|
10
|
Affiliation(s)
- Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization Hubei Normal University Huangshi China
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo Waterloo Canada
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo Waterloo Canada
| |
Collapse
|
11
|
Zhu K, Wang Z, Zong S, Liu Y, Yang K, Li N, Wang Z, Li L, Tang H, Cui Y. Hydrophobic Plasmonic Nanoacorn Array for a Label-Free and Uniform SERS-Based Biomolecular Assay. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29917-29927. [PMID: 32510192 DOI: 10.1021/acsami.0c03993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A surface-enhanced Raman scattering (SERS) aptasensor based on a hydrophobic assembled nanoacorn (HANA) was developed with improved reproducibility and reduced nonspecific binding effect. In the fabrication process, a hexagonal-packed gold film over nanosphere (AuFON) arrays was first obtained and used as a hydrophobic plasmonic substrate. Then, a uniform sub-3 nm molecular spacer array (containing Raman reporters) was prepared by patterning nanometric hydrophilic ultrathin patches onto the hydrophobic AuFON, in which the hydrophilic thin layer is composed of polymers and aptamers. During the sensing process, the HANA aptasensor smartly impedes the adsorption of SERS probes as Au@Ag nanocubes (Au@Ag NCs) in the absence of targets. In the presence of targets, the displacement of aptamers occurs due to the specific interaction between the targets and the aptamers, and the Au@Ag NCs can be assembled onto the hydrophilic patches on AuFON through electrostatic interactions with polymers. Thus, SERS signals of reporter molecules inside the spacer can be dramatically enhanced due to the formation of a nanoparticle-on-mirror (NPoM) array. In such a SERS aptasensor, the well-ordered distribution of SERS probes ensures excellent repeatability, while the precise subnanometer junctions guarantee high sensitivity. More importantly, since the hydrophobic surface can greatly reduce nonspecific adsorption, the tedious process of nonspecific blocking that is employed in traditional biosensors is no longer needed. Using such a SERS HANA platform, human epidermal growth factor receptor 2 (HER2) and three exosomal proteins were analyzed with high sensitivity and good reproducibility (RSD < 7%) in whole-blood samples.
Collapse
Affiliation(s)
- Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yun Liu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Kuo Yang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Na Li
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Zhile Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Lang Li
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Hailong Tang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
12
|
Sensitive and selective SERS probe for detecting the activity of γ-glutamyl transpeptidase in serum. Anal Chim Acta 2019; 1099:119-125. [PMID: 31986268 DOI: 10.1016/j.aca.2019.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 11/21/2022]
Abstract
γ-Glutamyl transpeptidase (GGT) has attracted considerable attention for its regulatory effect on glutathione metabolism in living organisms; further, its close relationship with physiological dysfunctions such as hepatitis and liver cancers has enhanced its applicability. Therefore, the accurate detection of GGT levels is particularly important for the early diagnosis of diseases. Thus, we herein report the development of a surface-enhanced Raman spectroscopic (SERS) probe, namely bis-s,s'-((s)-4,4'-thiolphenylamide-Glu) (b-(s)-TPA-Glu), that comprises of a γ-glutamyl moiety for detection of the GGT activity. In this system, detection was achieved by observing differences in the SERS spectral profiles of the b-(s)-TPA-Glu probe and its corresponding hydrolysis product that resulted from the catalytic action of GGT. This SERS probe system exhibited a high selectivity toward GGT due to a combination of its specific catalytic action and the distinctive spectroscopic fingerprint of the SERS technique. The developed SERS approach was also found to be approximately linear in the range of 0.2-200 U/L, and a limit of detection of 0.09 U/L was determined. Furthermore, the proposed SERS method was suitable for detection of the GGT activity of clinical serum samples and also for evaluation of the inhibitors of GGT. Consequently, this approach is considered to be a promising diagnostic and drug screening tool for GGT-associated diseases.
Collapse
|
13
|
Rapid and label-free screening of echinococcosis serum profiles through surface-enhanced Raman spectroscopy. Anal Bioanal Chem 2019; 412:279-288. [DOI: 10.1007/s00216-019-02234-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
|