1
|
Alonzo SMM, De S, Morris V, Autrey DE, Gautam BR, Pathiraja G, Bastakoti BP. Intercalation of Polyacrylonitrile Nanoparticles in Ti 3C 2T x MXene Layers for Improved Supercapacitance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64784-64796. [PMID: 39541596 DOI: 10.1021/acsami.4c14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
We report the intercalation of polyacrylonitrile nanoparticles in Ti3C2Tx MXene layers through simple sonication. The use of polyacrylonitrile, which was synthesized via radical polymerization, offered dual benefits: (1) It increased the interlayer spacing of MXene, thereby exposing more surface area and enhancing ion transport channels during charge and discharge cycles, and (2) Integrating MXene with polyacrylonitrile enables the creation of a composite with conductive properties, following percolation principle. X-ray diffraction analysis showed an increase in the c-lattice parameter, indicative of the interlayer spacing, from 22.31 Å for the pristine MXene to 37.73 Å for the MXene-polyacrylonitrile composite. The intercalated polyacrylonitrile nanoparticles facilitated the delamination by weakening the interlayer interactions, especially during sonication. Electrochemical assessments revealed significant improvement in the properties of the MXene-polyacrylonitrile composite compared to the pristine MXene. The assembled asymmetric device achieved a good specific capacitance of 32.1 F/g, an energy density of 11.42 W h/kg, and 82.2% capacitance retention after 10,000 cycles, highlighting the practical potential of the MXene-polyacrylonitrile composite.
Collapse
Affiliation(s)
- Shanna Marie M Alonzo
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St. Greensboro, North Carolina 27411, United States
| | - Shrabani De
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St. Greensboro, North Carolina 27411, United States
| | - Vanessa Morris
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University, 1200 Murchison Road, Fayetteville, North Carolina 28301, United States
| | - Daniel E Autrey
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University, 1200 Murchison Road, Fayetteville, North Carolina 28301, United States
| | - Bhoj Raj Gautam
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University, 1200 Murchison Road, Fayetteville, North Carolina 28301, United States
| | - Gayani Pathiraja
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 East Gate City Blvd, Greensboro, North Carolina 27401, United States
| | - Bishnu Prasad Bastakoti
- Department of Chemistry, North Carolina A&T State University, 1601 E. Market St. Greensboro, North Carolina 27411, United States
| |
Collapse
|
2
|
Abid MZ, Rafiq K, Rauf A, Hussain E. Unveiling the potential of MXene-fabricated catalysts: an effective approach for H 2 generation from water splitting. NANOSCALE ADVANCES 2024:d4na00754a. [PMID: 39484151 PMCID: PMC11523837 DOI: 10.1039/d4na00754a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Hydrogen has enough potential and can be successfully used as an alternative to the conventional fuel. It can be successfully produced from water that is not only a sustainable source but exists everywhere on earth. Additionally, its combustion releases water that is quite safe and environment friendly. The current project was designed to generate hydrogen from catalytic water splitting on TiO2@Ti3C2T x catalysts. To obtain the required catalytic characteristics, titania was engineered on Ti3C2T x surfaces in situ using an ethanol-assisted solvothermal approach. After careful recovery, the catalysts were characterized and assessed for the photoreaction. All photoreactions were performed in a quartz reactor (150 mL), where hydrogen evolution activities were monitored on GC-TCD (Shimadzu-JP). The comparative activities indicated that TiO2@C and TiO2@Ti3C2T x catalysts deliver 9.37 and 18.57 mmol g-1 h-1 of hydrogen, respectively. The higher activities of TiO2@Ti3C2T x were attributed to the existence of higher active sites (charge trapping centres) on the multilayer MXene that progressively promote and facilitate redox reactions. Reason is that existence of titania on MXene interfaces develops heterojunctions that rectify the charge transfer; hence reduce the charge recombination (i.e., back reaction). On the basis of encouraging activities, it has been concluded that the aforementioned approach holds promise to replace the costly and conventional hydrogen generation technologies.
Collapse
Affiliation(s)
- Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur 63100 Pakistan
| | - Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur 63100 Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur 63100 Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur 63100 Pakistan
| |
Collapse
|
3
|
Oliveira FM, Amousa N, Subramani A, Luxa J, Senthil C, Sofer Z, Gonzalez-Julian J. Maximizing Potential Applications of MAX Phases: Sustainable Synthesis of Multielement Ti 3AlC 2. Inorg Chem 2024; 63:14851-14859. [PMID: 39075950 PMCID: PMC11323249 DOI: 10.1021/acs.inorgchem.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
This study employs the molten-salt-shielded method to dope the Ti3AlC2 MAX phase with Nb and Mo, aiming to expand the intrinsic potential of the material. X-ray diffraction confirms the preservation of the hexagonal lattice structure of Ti3AlC2, while Raman and X-ray photoelectron spectroscopic analyses reveal the successful incorporation of dopants with subtle yet significant alterations in the vibrational modes and chemical environment. Scanning electron microscopy with energy-dispersive X-ray spectroscopy characterizations illustrate the characteristic layered morphology and uniform dopant distribution. Density functional theory simulations provide insights into the modified electronic structure, displaying changes in carrier transport mechanisms and potential increases in metallic conductivity, particularly when doping occurs at both the M and A sites. The computational findings are corroborated by the experimental results, suggesting that the enhanced material may possess improved properties for electronic applications. This comprehensive approach not only expands the MAX phase family but also tailors its functionality, which could allow for the production of hybrid materials with novel functionalities not present in the pristine form.
Collapse
Affiliation(s)
- Filipa M. Oliveira
- Department
of Inorganic Chemistry, Faculty of Chemical Technology, Prague University of Chemistry and Technology, Technická
5, Prague 6 166 28, Czech Republic
| | - Nima Amousa
- Chair
of Ceramics, Institute of Mineral Engineering
(GHI) RWTH Aachen University, Forckenbeckstrasse 33, Aachen 52074, Germany
| | - Amutha Subramani
- Department
of Inorganic Chemistry, Faculty of Chemical Technology, Prague University of Chemistry and Technology, Technická
5, Prague 6 166 28, Czech Republic
| | - Jan Luxa
- Department
of Inorganic Chemistry, Faculty of Chemical Technology, Prague University of Chemistry and Technology, Technická
5, Prague 6 166 28, Czech Republic
| | - Chenrayan Senthil
- Department
of Energy Engineering, Gyeonsang National
University, Jinju-si 52725, Gyeongnam, South Korea
| | - Zdeněk Sofer
- Department
of Inorganic Chemistry, Faculty of Chemical Technology, Prague University of Chemistry and Technology, Technická
5, Prague 6 166 28, Czech Republic
| | - Jesus Gonzalez-Julian
- Chair
of Ceramics, Institute of Mineral Engineering
(GHI) RWTH Aachen University, Forckenbeckstrasse 33, Aachen 52074, Germany
| |
Collapse
|
4
|
Fang K, Li P, Zhang B, Liu S, Zhao X, Kou L, Xu W, Guo X, Li J. Insights on updates in sodium alginate/MXenes composites as the designer matrix for various applications: A review. Int J Biol Macromol 2024; 269:132032. [PMID: 38702004 DOI: 10.1016/j.ijbiomac.2024.132032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Advancements in two-dimensional materials, particularly MXenes, have spurred the development of innovative composites through their integration with natural polymers such as sodium alginate (SA). Mxenes exhibit a broad specific surface area, excellent electrical conductivity, and an abundance of surface terminations, which can be combined with SA to maximize the synergistic effect of the materials. This article provides a comprehensive review of state-of-the-art techniques in the fabrication of SA/MXene composites, analyzing the resulting structural and functional enhancements with a specific focus on advancing the design of these composites for practical applications. A detailed exploration of SA/MXene composites is provided, highlighting their utility in various sectors, such as wearable electronics, wastewater treatment, biomedical applications, and electromagnetic interference (EMI) shielding. The review identifies the unique advantages conferred by incorporating MXene in these composites, examines the current challenges, and proposes future research directions to understand and optimize these promising materials thoroughly. The remarkable properties of MXenes are emphasized as crucial for advancing the performance of SA-based composites, indicating significant potential for developing high-performance composite materials.
Collapse
Affiliation(s)
- Kun Fang
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Pei Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China,.
| | - Bing Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Si Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Xiaoyang Zhao
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Linxuan Kou
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Xiangyang Guo
- College of Life Science, Xinyang Normal University, Xinyang 464000, Henan, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
5
|
Srivatsa S, Tokarz W, Przewoźnik J, Strączek T, Grabowski K, Rutkowski P, Uhl T, Kulawik J, Kata D, Madej D, Lis J, Kapusta C. Temperature Evolution of Composition, Thermal, Electrical and Magnetic Properties of Ti 3C 2T x-MXene. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2199. [PMID: 38793266 PMCID: PMC11122809 DOI: 10.3390/ma17102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024]
Abstract
MXenes are a family of two-dimensional nanomaterials. Titanium carbide MXene (Ti3C2Tx-MXene), reported in 2011, is the first inorganic compound reported among the MXene family. In the present work, we report on the study of the composition and various physical properties of Ti3C2Tx-MXene nanomaterial, as well as their temperature evolution, to consider MXenes for space applications. X-ray diffraction, thermal analysis and mass spectroscopy measurements confirmed the structure and terminating groups of the MXene surface, revealing a predominant single OH layer character. The temperature dependence of the specific heat shows a Debye-like character in the measured range of 2 K-300 K with a linear part below 10 K, characteristic of conduction electrons of metallic materials. The electron density of states (DOS) calculations for Ti3C2OH-MXene reveal a significant DOS value at the Fermi level, with a large slope, confirming its metallic character, which is consistent with the experimental findings. The temperature dependence of electrical resistivity of the MXene samples was tested for a wide temperature range (3 K-350 K) and shows a decrease on lowering temperature with an upturn at low temperatures, where negative magnetoresistance is observed. The magnetoresistance versus field is approximately linear and increases its magnitude with decreasing temperature. The magnetization curves are straight lines with temperature-independent positive slopes, indicating Pauli paramagnetism due to conduction electrons.
Collapse
Affiliation(s)
- Shreyas Srivatsa
- Space Technology Centre, AGH University of Krakow, 30-059 Krakow, Poland; (S.S.); (K.G.); (T.U.)
| | - Waldemar Tokarz
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, 30-059 Krakow, Poland; (J.P.); (C.K.)
| | - Janusz Przewoźnik
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, 30-059 Krakow, Poland; (J.P.); (C.K.)
| | - Tomasz Strączek
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Kraków, Poland;
| | - Krzysztof Grabowski
- Space Technology Centre, AGH University of Krakow, 30-059 Krakow, Poland; (S.S.); (K.G.); (T.U.)
- Department of Robotics and Mechatronics, AGH University of Krakow, 30-059 Krakow, Poland
| | - Paweł Rutkowski
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (P.R.); (D.K.); (D.M.); (J.L.)
| | - Tadeusz Uhl
- Space Technology Centre, AGH University of Krakow, 30-059 Krakow, Poland; (S.S.); (K.G.); (T.U.)
- Department of Robotics and Mechatronics, AGH University of Krakow, 30-059 Krakow, Poland
| | - Jan Kulawik
- Kraków Division, Łukasiewicz Research Network—Institute of Microelectronics and Photonics, 30-701 Kraków, Poland;
| | - Dariusz Kata
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (P.R.); (D.K.); (D.M.); (J.L.)
| | - Dominika Madej
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (P.R.); (D.K.); (D.M.); (J.L.)
| | - Jerzy Lis
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (P.R.); (D.K.); (D.M.); (J.L.)
| | - Czesław Kapusta
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, 30-059 Krakow, Poland; (J.P.); (C.K.)
| |
Collapse
|
6
|
Aravind AM, Tomy M, Kuttapan A, Kakkassery Aippunny AM, Suryabai XT. Progress of 2D MXene as an Electrode Architecture for Advanced Supercapacitors: A Comprehensive Review. ACS OMEGA 2023; 8:44375-44394. [PMID: 38046319 PMCID: PMC10688139 DOI: 10.1021/acsomega.3c02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Supercapacitors, designed to store more energy and be proficient in accumulating more energy than conventional batteries with numerous charge-discharge cycles, have been developed in response to the growing demand for energy. Transition metal carbides/nitrides called MXenes have been the focus of researchers' cutting-edge research in energy storage. The 2D-layered MXenes are a hopeful contender for the electrode material due to their unique properties, such as high conductivity, hydrophilicity, tunable surface functional groups, better mechanical properties, and outstanding electrochemical performance. This newly developed pseudocapacitive substance benefits electrochemical energy storage because it is rich in interlayer ion diffusion pathways and ion storage sites. Making MXene involves etching the MAX phase precursor with suitable etchants, but different etching methods have distinct effects on the morphology and electrochemical properties. It is an overview of the recent progress of MXene and its structure, synthesis, and unique properties. There is a strong emphasis on the effects of shape, size, electrode design, electrolyte behavior, and other variables on the charge storage mechanism and electrochemical performance of MXene-based supercapacitors. The electrochemical application of MXene and the remarkable research achievements in MXene-based composites are an intense focus. Finally, in light of further research and potential applications, the challenges and future perspectives that MXenes face and the prospects that MXenes present have been highlighted.
Collapse
Affiliation(s)
- Anu Mini Aravind
- Centre
for Advanced Materials Research, Department of Physics, Government
College for Women, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| | - Merin Tomy
- Centre
for Advanced Materials Research, Department of Physics, Government
College for Women, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| | | | | | - Xavier Thankappan Suryabai
- Centre
for Advanced Materials Research, Department of Physics, Government
College for Women, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
7
|
Ustad RE, Kundale SS, Rokade KA, Patil SL, Chavan VD, Kadam KD, Patil HS, Patil SP, Kamat RK, Kim DK, Dongale TD. Recent progress in energy, environment, and electronic applications of MXene nanomaterials. NANOSCALE 2023; 15:9891-9926. [PMID: 37097309 DOI: 10.1039/d2nr06162g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the discovery of graphene, two-dimensional (2D) materials have gained widespread attention, owing to their appealing properties for various technological applications. Etched from their parent MAX phases, MXene is a newly emerged 2D material that was first reported in 2011. Since then, a lot of theoretical and experimental work has been done on more than 30 MXene structures for various applications. Given this, in the present review, we have tried to cover the multidisciplinary aspects of MXene including its structures, synthesis methods, and electronic, mechanical, optoelectronic, and magnetic properties. From an application point of view, we explore MXene-based supercapacitors, gas sensors, strain sensors, biosensors, electromagnetic interference shielding, microwave absorption, memristors, and artificial synaptic devices. Also, the impact of MXene-based materials on the characteristics of respective applications is systematically explored. This review provides the current status of MXene nanomaterials for various applications and possible future developments in this field.
Collapse
Affiliation(s)
- Ruhan E Ustad
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Somnath S Kundale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Kasturi A Rokade
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Snehal L Patil
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| | - Vijay D Chavan
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Kalyani D Kadam
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Harshada S Patil
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Sarita P Patil
- School of Physical Science, Sanjay Ghodawat University, Atigre, Kolhapur-416118, MH, India
| | - Rajanish K Kamat
- Department of Electronics, Shivaji University, Kolhapur-416004, India
- Dr Homi Bhabha State University, 15, Madam Cama Road, Mumbai-400032, India
| | - Deok-Kee Kim
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Korea.
| | - Tukaram D Dongale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur-416004, India.
| |
Collapse
|
8
|
Saharan S, Ghanekar U, Meena S. Two‐Dimensional MXenes for Energy Storage: Computational and Experimental Approaches. ChemistrySelect 2022. [DOI: 10.1002/slct.202203288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sunita Saharan
- Department of Electronics & Communication Engineering National Institute of Technology Kurukshetra Kurukshetra 136119, Haryana India
| | - Umesh Ghanekar
- Department of Electronics & Communication Engineering National Institute of Technology Kurukshetra Kurukshetra 136119, Haryana India
| | - Shweta Meena
- Department of Electronics & Communication Engineering National Institute of Technology Kurukshetra Kurukshetra 136119, Haryana India
| |
Collapse
|
9
|
Jing H, Lyu B, Tang Y, Baek S, Park JH, Lee BH, Lee JY, Lee S. β‐Mercaptoethanol‐Enabled Long‐Term Stability and Work Function Tuning of MXene. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Hongyue Jing
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University Suwon 440-746 Korea
| | - Benzheng Lyu
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong 518057 China
| | - Yingqi Tang
- Department of Chemistry Sungkyunkwan University Suwon 16419 Korea
| | - Sungpyo Baek
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University Suwon 440-746 Korea
| | - Jin-Hong Park
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University Suwon 440-746 Korea
| | - Byoung Hun Lee
- Department of Electrical Engineering Pohang University of Science and Technology Pohang 37673 Korea
| | - Jin Yong Lee
- Department of Chemistry Sungkyunkwan University Suwon 16419 Korea
| | - Sungjoo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University Suwon 440-746 Korea
- Department of Nano Engineering Sungkyunkwan University Suwon 440-746 Korea
| |
Collapse
|
10
|
Park BJ, Yoon Y, Han YH, Jung YS. High-Capacity Ti 3C 2T x MXene Electrodes Achieved by Eliminating Intercalated Water Molecules Using a Co-solvent System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30080-30089. [PMID: 35737937 DOI: 10.1021/acsami.2c06070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Synthesizing layered transition-metal carbides, MXenes, with a mesoporous structure remains challenging but is highly useful because it converts the laminated two-dimensional structures into versatile porous materials. Hydrogen bonds between intercalated H2O molecules and oxygen terminal groups on the surface are formed in aqueous solution processes, and this is a determining factor of surface area. We developed an extraction method to remove intercalated water molecules based on a simple intermolecular force attraction strategy in a co-solvent system using a combination of polar-protic/-aprotic and non-polar solvents. As a result, self-aggregated mesoporous Ti3C2Tx was realized without any additives. The dipole-dipole interaction between H2O and CHCl3 molecules under non-polar solvent conditions assists the extraction of intercalated H2O from the MXene suspension, which can form a self-aggregated morphology (not re-stacked horizontally). The process yields Ti3C2Tx with a layered structure of embedded mesopores and a specific surface area that is 13-fold higher than that of standard MXene. Electrodes made with the resulting MXene exhibited a larger specific capacitance of 224 F/g (1 A/g), with an improved cyclic retention of 96.4%@10,000 cycles. This intermolecular attraction-induced approach, involving the manipulation of morphology, is simple to mass-produce and can be used for MXene-based electrochemical applications.
Collapse
Affiliation(s)
- Byung Jun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- New & Renewable Energy Laboratory, Korea Electric Power Corporation (KEPCO) Research Institute, 105 Munji-ro, Yuseong-gu, Daejeon 34056, Republic of Korea
| | - Yeoheung Yoon
- New & Renewable Energy Laboratory, Korea Electric Power Corporation (KEPCO) Research Institute, 105 Munji-ro, Yuseong-gu, Daejeon 34056, Republic of Korea
| | - Young Hee Han
- New & Renewable Energy Laboratory, Korea Electric Power Corporation (KEPCO) Research Institute, 105 Munji-ro, Yuseong-gu, Daejeon 34056, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Panda S, Deshmukh K, Khadheer Pasha S, Theerthagiri J, Manickam S, Choi MY. MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214518] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Yu L, Xu L, Lu L, Alhalili Z, Zhou X. Thermal Properties of MXenes and Relevant Applications. Chemphyschem 2022; 23:e202200203. [PMID: 35674280 DOI: 10.1002/cphc.202200203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Indexed: 11/10/2022]
Abstract
The properties and applications of MXenes (a family of layered transition metal carbides, nitrides, and carbonitrides) have aroused enormous research interests for a decade since the successful synthesis of few-layer transition metal carbides in 2011. Though MXenes, as the building blocks, have already been applied in various fields (such as wearable electronics) owing to the distinctive optical, mechanical and electrical properties, their thermal stability and intrinsic thermal properties were less thoroughly investigated compared to other characteristics in early reports. The pioneering theoretical prediction of the thermoelectric nature of MXenes was performed in 2013 while the first experiment-based report concerning the degradation behavior of the 2D structure at elevated temperatures in a controlled atmosphere was published in 2015, followed by numerous discoveries regarding the thermal properties of MXenes. Herein, after a brief description of the synthesis, this Review summarized the latest insights into the thermal stability and thermophysical properties of MXenes, and further associated these unique properties with relevant applications by multiple examples. Finally, current hurdles and challenges in this field were provided along with some advices on potential research directions in the future.
Collapse
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts, Shaqra University, Sajir, Riyadh, Saudi Arabia
| | - XiaoHong Zhou
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| |
Collapse
|
13
|
Huang H, Dong C, Feng W, Wang Y, Huang B, Chen Y. Biomedical engineering of two-dimensional MXenes. Adv Drug Deliv Rev 2022; 184:114178. [PMID: 35231544 DOI: 10.1016/j.addr.2022.114178] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/23/2022] [Accepted: 02/23/2022] [Indexed: 02/08/2023]
Abstract
The emergence of two-dimensional (2D) transition metal carbides, carbonitrides and nitrides, referred to MXenes, with a general chemical formula of Mn+1XnTx have aroused considerable interest and shown remarkable potential applications in diverse fields. The unique ultrathin lamellar structure accompanied with charming electronic, optical, magnetic, mechanical and biological properties make MXenes as a kind of promising alternative biomaterials for versatile biomedical applications, as well as uncovering many new fundamental scientific discoveries. Herein, the current state-of-the-art advances of MXenes-related biomaterials are systematically summarized in this comprehensive review, especially focusing on the synthetic methodologies, design and surface engineering strategies, unique properties, biological effects, and particularly the property-activity-effect relationship of MXenes at the nano-bio interface. Furthermore, the elaborated MXenes for varied biomedical applications, such as biosensors and biodevices, antibacteria, bioimaging, therapeutics, theranostics, tissue engineering and regenerative medicine, are illustrated in detail. Finally, we discuss the current challenges and opportunities for future advancement of MXene-based biomaterials in-depth on the basis of the present situation, aiming to facilitate their early realization of practical biomedical applications.
Collapse
|
14
|
Damiri F, Rahman MH, Zehravi M, Awaji AA, Nasrullah MZ, Gad HA, Bani-Fwaz MZ, Varma RS, Germoush MO, Al-Malky HS, Sayed AA, Rojekar S, Abdel-Daim MM, Berrada M. MXene (Ti 3C 2T x)-Embedded Nanocomposite Hydrogels for Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1666. [PMID: 35268907 PMCID: PMC8911478 DOI: 10.3390/ma15051666] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023]
Abstract
Polymeric nanocomposites have been outstanding functional materials and have garnered immense attention as sustainable materials to address multi-disciplinary problems. MXenes have emerged as a newer class of 2D materials that produce metallic conductivity upon interaction with hydrophilic species, and their delamination affords monolayer nanoplatelets of a thickness of about one nm and a side size in the micrometer range. Delaminated MXene has a high aspect ratio, making it an alluring nanofiller for multifunctional polymer nanocomposites. Herein, we have classified and discussed the structure, properties and application of major polysaccharide-based electroactive hydrogels (hyaluronic acid (HA), alginate sodium (SA), chitosan (CS) and cellulose) in biomedical applications, starting with the brief historical account of MXene's development followed by successive discussions on the synthesis methods, structures and properties of nanocomposites encompassing polysaccharides and MXenes, including their biomedical applications, cytotoxicity and biocompatibility aspects. Finally, the MXenes and their utility in the biomedical arena is deliberated with an eye on potential opportunities and challenges anticipated for them in the future, thus promoting their multifaceted applications.
Collapse
Affiliation(s)
- Fouad Damiri
- Labortory of Biomolecules and Organic Synthesis (BioSynthO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon, Korea
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University Alkharj, Alkharj 11942, Saudi Arabia
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed Z Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A Gad
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mutasem Z Bani-Fwaz
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah 21589, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Berrada
- Labortory of Biomolecules and Organic Synthesis (BioSynthO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| |
Collapse
|
15
|
Tahir R, Zahra SA, Naeem U, Akinwande D, Rizwan S. First observation on emergence of strong room-temperature ferroelectricity and multiferroicity in 2D-Ti 3C 2T x free-standing MXene film. RSC Adv 2022; 12:24571-24578. [PMID: 36128398 PMCID: PMC9426648 DOI: 10.1039/d2ra04428e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Two-dimensional (2D) multiferroics are key candidate materials towards advancement of smart technology. Here, we employed a simple synthesis approach to address the long-awaited dream of developing ferroelectric and multiferroic 2D materials, especially in the new class of materials called MXenes. The etched Ti3C2Tx MXene was first synthesized after HF-treatment followed by a delamination process for successful synthesis of free-standing Ti3C2Tx film. The free-standing film was then exposed to air at room-temperature and heated at different temperatures to form a TiO2 layer derived from the Ti3C2Tx MXene itself. The ferroelectric measurement showed a clear polarization hysteresis loop at room-temperature. Also, due to the reported ferromagnetic behavior of Ti3C2Tx MXene, our composite could show multiferroic properties at room-temperature. The magnetoelectric coupling test was also performed that showed a clear, switchable spontaneous polarization under applied magnetic field. TiO2 is reported to be an incipient ferroelectric that assumes a ferroelectric phase in composite form. The structural and morphological analysis confirmed successful synthesis of free-standing film and the Raman spectroscopy revealed the formation of different phases of TiO2 and the observed ferroelectricity could be due to structural deformation as a result of the formation of this new phase. The measured value of remanent polarization is 0.5 μC cm−2. This is the first report on the existence of a ferroelectric phase and multiferroic coupling in 2D free-standing MXene film at room-temperature which opens-up the possibility of 2D material-based electric and magnetic data storage applications at room-temperature. Two-dimensional (2D) multiferroics are key candidate materials towards advancement of smart technology.![]()
Collapse
Affiliation(s)
- Rabia Tahir
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences, National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| | - Syedah Afsheen Zahra
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences, National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| | - Usman Naeem
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences, National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| | - Deji Akinwande
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, USA
| | - Syed Rizwan
- Physics Characterization and Simulations Lab (PCSL), Department of Physics, School of Natural Sciences, National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan
| |
Collapse
|
16
|
Chang B, Guo Y, Wu D, Li L, Yang B, Wang J. Plasmon-enabled N 2 photofixation on partially reduced Ti 3C 2 MXene. Chem Sci 2021; 12:11213-11224. [PMID: 34522319 PMCID: PMC8386658 DOI: 10.1039/d1sc02772g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/20/2021] [Indexed: 12/25/2022] Open
Abstract
Benefiting from the superior conductivity, rich surface chemistry and tunable bandgap, Ti3C2 MXene has become a frontier cocatalyst material for boosting the efficiency of semiconductor photocatalysts. It has been theoretically predicted to be an ideal material for N2 fixation. However, the realization of N2 photofixation with Ti3C2 as a host photocatalyst has so far remained experimentally challenging. Herein, we report on a sandwich-like plasmon- and an MXene-based photocatalyst made of Au nanospheres and layered Ti3C2, and demonstrate its efficient N2 photofixation in pure water under ambient conditions. The abundant low-valence Ti (Ti(4-x)+) sites in partially reduced Ti3C2 (r-Ti3C2) produced by surface engineering through H2 thermal reduction effectively capture and activate N2, while Au nanospheres offer plasmonic hot electrons to reduce the activated N2 into NH3. The Ti(4-x)+ active sites and plasmon-generated hot electrons work in tandem to endow r-Ti3C2/Au with remarkably enhanced N2 photofixation activity. Importantly, r-Ti3C2/Au exhibits ultrahigh selectivity without the occurrence of competing H2 evolution. This work opens up a promising route for the rational design of efficient MXene-based photocatalysts.
Collapse
Affiliation(s)
- Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Yanzhen Guo
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College Zhengzhou 450006 China
| | - Donghai Wu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College Zhengzhou 450006 China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Baocheng Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College Zhengzhou 450006 China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong Shatin Hong Kong SAR China
| |
Collapse
|
17
|
Yu L, Lu L, Zhou X, Xu L, Alhalili Z, Wang F. Strategies for Fabricating High‐Performance Electrochemical Energy‐Storage Devices by MXenes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - XiaoHong Zhou
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts Shaqra University Sajir Riyadh Saudi Arabia
| | - FengJun Wang
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| |
Collapse
|
18
|
Allen-Perry K, Straka W, Keith D, Han S, Reynolds L, Gautam B, Autrey DE. Tuning the Magnetic Properties of Two-Dimensional MXenes by Chemical Etching. MATERIALS (BASEL, SWITZERLAND) 2021; 14:694. [PMID: 33540805 PMCID: PMC7867348 DOI: 10.3390/ma14030694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022]
Abstract
Two-dimensional materials based on transition metal carbides have been intensively studied due to their unique properties including metallic conductivity, hydrophilicity and structural diversity and have shown a great potential in several applications, for example, energy storage, sensing and optoelectronics. While MXenes based on magnetic transition elements show interesting magnetic properties, not much is known about the magnetic properties of titanium-based MXenes. Here, we measured the magnetic properties of Ti3C2Tx MXenes synthesized by different chemical etching conditions such as etching temperature and time. Our magnetic measurements were performed in a superconducting quantum interference device (SQUID) vibrating sample. These data suggest that there is a paramagnetic-antiferromagnetic (PM-AFM) phase transition and the transition temperature depends on the synthesis procedure of MXenes. Our observation indicates that the magnetic properties of these MXenes can be tuned by the extent of chemical etching, which can be beneficial for the design of MXenes-based spintronic devices.
Collapse
Affiliation(s)
- Kemryn Allen-Perry
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, NC 28301, USA; (K.A.-P.); (D.K.); (S.H.); (B.G.)
| | - Weston Straka
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (W.S.); (L.R.)
| | - Danielle Keith
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, NC 28301, USA; (K.A.-P.); (D.K.); (S.H.); (B.G.)
| | - Shubo Han
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, NC 28301, USA; (K.A.-P.); (D.K.); (S.H.); (B.G.)
| | - Lewis Reynolds
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA; (W.S.); (L.R.)
| | - Bhoj Gautam
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, NC 28301, USA; (K.A.-P.); (D.K.); (S.H.); (B.G.)
| | - Daniel E. Autrey
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, NC 28301, USA; (K.A.-P.); (D.K.); (S.H.); (B.G.)
| |
Collapse
|
19
|
Hantanasirisakul K, Anasori B, Nemsak S, Hart JL, Wu J, Yang Y, Chopdekar RV, Shafer P, May AF, Moon EJ, Zhou J, Zhang Q, Taheri ML, May SJ, Gogotsi Y. Evidence of a magnetic transition in atomically thin Cr 2TiC 2T x MXene. NANOSCALE HORIZONS 2020; 5:1557-1565. [PMID: 33089267 DOI: 10.1039/d0nh00343c] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) transition metal carbides and nitrides known as MXenes have shown attractive functionalities such as high electronic conductivity, a wide range of optical properties, versatile transition metal and surface chemistry, and solution processability. Although extensively studied computationally, the magnetic properties of this large family of 2D materials await experimental exploration. 2D magnetic materials have recently attracted significant interest as model systems to understand low-dimensional magnetism and for potential spintronic applications. Here, we report on synthesis of Cr2TiC2Tx MXene and a detailed study of its magnetic as well as electronic properties. Using a combination of magnetometry, synchrotron X-ray linear dichroism, and field- and angular-dependent magnetoresistance measurements, we find clear evidence of a magnetic transition in Cr2TiC2Tx at approximately 30 K, which is not present in its bulk layered carbide counterpart (Cr2TiAlC2 MAX phase). This work presents the first experimental evidence of a magnetic transition in a MXene material and provides an exciting opportunity to explore magnetism in this large family of 2D materials.
Collapse
|
20
|
Deshmukh K, Kovářík T, Khadheer Pasha S. State of the art recent progress in two dimensional MXenes based gas sensors and biosensors: A comprehensive review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213514] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Le TA, Tran NQ, Hong Y, Kim M, Lee H. Porosity-Engineering of MXene as a Support Material for a Highly Efficient Electrocatalyst toward Overall Water Splitting. CHEMSUSCHEM 2020; 13:945-955. [PMID: 31891223 DOI: 10.1002/cssc.201903222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/31/2019] [Indexed: 06/10/2023]
Abstract
The use of 2 D transition metal carbide MXenes as support materials to incorporate catalytically active compounds is of interest because of their unique properties. However, the preparation of well-dispersed catalytic phases on the inter-connected porous MXene network is challenging and has been rarely explored. This work focuses on the synthesis of basal-plane-porous titanium carbide MXene (ac-Ti3 C2 ) that is used subsequently as an effective host for the incorporation of a known catalytically active phase (IrCo) as an effective bifunctional electrocatalyst toward water splitting. The porous ac-Ti3 C2 with abundant macro/meso/micropores is prepared by a wet chemical method at room temperature and provides ideal anchor sites for intimate chemical bonding with alien compounds. The resulting IrCo@ac-Ti3 C2 electrocatalyst exhibits an excellent reactivity (220 mV at 10 mA cm-2 ) towards the oxygen evolution reaction in 1.0 m KOH, which surpasses that of the benchmark RuO2 , a low voltage cell of 1.57 V (@ 10 mA cm-2 ) and good long-term durability. Our work demonstrates the effectiveness of porosity engineering in MXene nanosheets as a support material to shorten ion migration pathways, to increase electrolyte accessibility between inter-sheets and to overcome inherited re-stacking and aggregation issues.
Collapse
Affiliation(s)
- Thi Anh Le
- Centre for Integrated Nanostructure Physics Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 440-746, South Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Ngoc Quang Tran
- Centre for Integrated Nanostructure Physics Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 440-746, South Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Yeseul Hong
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Meeree Kim
- Centre for Integrated Nanostructure Physics Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 440-746, South Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Hyoyoung Lee
- Centre for Integrated Nanostructure Physics Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 440-746, South Korea
- Department of Chemistry, Sungkyunkwan University, Suwon, 440-746, South Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, South Korea
| |
Collapse
|
22
|
Ivanovskaya M, Ovodok E, Kotsikau D, Azarko I, Micusik M, Omastova M, Golovanov V. Structural transformation and nature of defects in titanium carbide treated in different redox atmospheres. RSC Adv 2020; 10:25602-25608. [PMID: 35518603 PMCID: PMC9055241 DOI: 10.1039/d0ra02959a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022] Open
Abstract
The defect structure and phase formation processes occurring in the bulk and on the surface of titanium carbide (TiC) under thermal treatment in different ambient atmospheres (air, hydrogen, vacuum) were characterized using XRD, SEM, EPR, XPS and IR-spectroscopy. The oxidized states of both titanium (TiO2−x) and carbon, in the form of carbonate–carboxylate structures (O–C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O), were found on the surface of untreated TiC. Carbon vacancies were detected as paramagnetic defects in the crystalline lattice of TiC. The heat treatment of TiC in reducing conditions leads to an increase of the electrical conductivity associated with the formation of structural defects. Annealing of TiC in air causes its oxidation with the formation of an anatase-type TiO2 phase. Paramagnetic defects typical of both TiC and TiO2−x were revealed. The state of the surface and the formation of paramagnetic defects (carbon vacancies, Ti3+ and O− centers) in titanium carbide after thermal treatment under different ambient conditions have been studied.![]()
Collapse
Affiliation(s)
- Maria Ivanovskaya
- Research Institute for Physical and Chemical Problems of the Belarusian State University
- 220006 Minsk
- Belarus
| | - Evgeni Ovodok
- Research Institute for Physical and Chemical Problems of the Belarusian State University
- 220006 Minsk
- Belarus
| | | | - Igor Azarko
- Belarusian State University
- 220030 Minsk
- Belarus
| | - Matej Micusik
- Polymer Institute
- Slovak Academy of Sciences
- 845 41 Bratislava
- Slovakia
| | - Maria Omastova
- Polymer Institute
- Slovak Academy of Sciences
- 845 41 Bratislava
- Slovakia
| | | |
Collapse
|
23
|
Natu V, Hart JL, Sokol M, Chiang H, Taheri ML, Barsoum MW. Edge Capping of 2D-MXene Sheets with Polyanionic Salts To Mitigate Oxidation in Aqueous Colloidal Suspensions. Angew Chem Int Ed Engl 2019; 58:12655-12660. [PMID: 31293049 DOI: 10.1002/anie.201906138] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/06/2019] [Indexed: 11/10/2022]
Abstract
MXenes have shown promise in myriad applications, such as energy storage, catalysis, EMI shielding, among many others. However, MXene oxidation in aqueous colloidal suspensions when stored in water at ambient conditions remains a challenge. It is now shown that by simply capping the edges of individual MXene flakes, Ti3 C2 Tz and V2 CTz , by polyanions such as polyphosphates, polysilicates or polyborates, it is possible to quite significantly reduce their propensity for oxidation even when held in aerated water for weeks. This breakthrough resulted from the realization that the edges of MXene sheets are positively charged. It is thus an example of selectively functionalizing the edges differently from the MXene sheet surfaces.
Collapse
Affiliation(s)
- Varun Natu
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - James L Hart
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Maxim Sokol
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Helen Chiang
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Mitra L Taheri
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Michel W Barsoum
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
24
|
Natu V, Hart JL, Sokol M, Chiang H, Taheri ML, Barsoum MW. Edge Capping of 2D‐MXene Sheets with Polyanionic Salts To Mitigate Oxidation in Aqueous Colloidal Suspensions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906138] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Varun Natu
- Department of Materials Science and Engineering Drexel University Philadelphia PA USA
| | - James L. Hart
- Department of Materials Science and Engineering Drexel University Philadelphia PA USA
| | - Maxim Sokol
- Department of Materials Science and Engineering Drexel University Philadelphia PA USA
| | - Helen Chiang
- Department of Materials Science and Engineering Drexel University Philadelphia PA USA
| | - Mitra L. Taheri
- Department of Materials Science and Engineering Drexel University Philadelphia PA USA
| | - Michel W. Barsoum
- Department of Materials Science and Engineering Drexel University Philadelphia PA USA
| |
Collapse
|
25
|
Park TH, Yu S, Koo M, Kim H, Kim EH, Park JE, Ok B, Kim B, Noh SH, Park C, Kim E, Koo CM, Park C. Shape-Adaptable 2D Titanium Carbide (MXene) Heater. ACS NANO 2019; 13:6835-6844. [PMID: 31117379 DOI: 10.1021/acsnano.9b01602] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Prior to the advent of the next-generation heater for wearable/on-body electronic devices, various properties are required, including conductivity, transparency, mechanical reliability, and conformability. Expansion to two-dimensional (2D) structure of metallic nanowires based on network- and mesh-type geometries has been widely exploited for realizing these heaters. However, the routes led to many drawbacks such as the low-density cross-bar linking, self-aggregation of wire, and high junction resistance. Although 2D carbon nanomaterials such as graphene and reduced graphene oxide (rGO) have shown their potentials for the purpose, CVD-grown graphene with sufficiently high conductivity was limited due to its poor processability for large-area applications, while rGO fabricated with a complex reduction process involving the use of toxic chemicals suffered from a low electrical conductivity. In this study, we demonstrate a simple and robust process, utilizing electrostatic assembling of negatively charged MXene flakes on a positively treated surface of substrate, for fabricating a metal-like 2D MXene thin film heater (TFH). Our TFH showed a high optical property (>65%), low sheet resistance (215 Ω/sq), fast electrothermal response (within dozens of seconds) with an intrinsically high electrical conductivity, and mechanical flexibility (up to 180° bending). Its capability for forming a firm and stable ionic-type interface with a counterpart surface allows us to develop a shape-adaptable and patchable thread heater (TH) that can be shaped on diverse substrates even under harsh conditions of conventional sewing or weaving processes. This work suggests that our shape-adaptable MXene heaters are potentially suitable not only for wearable devices for local heating and defrosting but also for a variety of emerging applications of soft actuators and wearable/flexible healthcare monitoring and thermotherapy.
Collapse
Affiliation(s)
- Tae Hyun Park
- Department of Materials Science and Engineering , Yonsei University , Seoul 03722 , Korea
| | - Seunggun Yu
- Insulation Materials Research Center , Korea Electrotechnology Research Institute (KERI) , Gyeongsangnam-do 51543 , Korea
| | - Min Koo
- Department of Materials Science and Engineering , Yonsei University , Seoul 03722 , Korea
| | - Hyerim Kim
- Materials Architecturing Research Centre , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Korea
- Department of Converging Science and Technology , KU-KIST Graduate School of Converging Science and Technology, Korea University , Seoul 02841 , Korea
| | - Eui Hyuk Kim
- Department of Materials Science and Engineering , Yonsei University , Seoul 03722 , Korea
| | - Jung-Eun Park
- Department of Materials Science and Engineering , Yonsei University , Seoul 03722 , Korea
| | - Byeori Ok
- Materials Architecturing Research Centre , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Korea
- Department of Converging Science and Technology , KU-KIST Graduate School of Converging Science and Technology, Korea University , Seoul 02841 , Korea
| | - Byeonggwan Kim
- Institut Parisien de Chimie Moléculaire (IPCM) , UMR CNRS-Sorbonne Université , Paris 75000 , France
- Department of Chemical and Biomolecular Engineering , Yonsei University , Seoul 03722 , Korea
| | - Sung Hyun Noh
- Department of Organic and Nano Engineering , Hanyang University , Seoul 04763 , Korea
| | - Chanho Park
- Department of Materials Science and Engineering , Yonsei University , Seoul 03722 , Korea
| | - Eunkyoung Kim
- Department of Chemical and Biomolecular Engineering , Yonsei University , Seoul 03722 , Korea
| | - Chong Min Koo
- Materials Architecturing Research Centre , Korea Institute of Science and Technology (KIST) , Seoul 02792 , Korea
- Department of Converging Science and Technology , KU-KIST Graduate School of Converging Science and Technology, Korea University , Seoul 02841 , Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering , Yonsei University , Seoul 03722 , Korea
| |
Collapse
|
26
|
Frey NC, Bandyopadhyay A, Kumar H, Anasori B, Gogotsi Y, Shenoy VB. Surface-Engineered MXenes: Electric Field Control of Magnetism and Enhanced Magnetic Anisotropy. ACS NANO 2019; 13:2831-2839. [PMID: 30653916 DOI: 10.1021/acsnano.8b09201] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Controlling magnetism in two-dimensional (2D) materials via electric fields and doping enables robust long-range order by providing an external mechanism to modulate magnetic exchange interactions and anisotropy. In this report, we predict that transition metal carbide and nitride MXenes are promising candidates for controllable magnetic 2D materials. The surface terminations introduced during synthesis act as chemical dopants that influence the electronic structure, enabling controllable magnetic order. We show ground-state magnetic ordering in Janus M2XO xF2- x (M is an early transition metal, X is carbon or nitrogen, and x = 0.5, 1, or 1.5) with asymmetric surface functionalization, where local structural and chemical disorder induces magnetic ordering in some systems that are nonmagnetic or weakly magnetic in their pristine form. The resulting magnetic states of these noncentrosymmetric structures can be robustly switched and stabilized by tuning the interlayer exchange couplings with small applied electric fields. Furthermore, bond directionality is enhanced by Janus functionalization, resulting in improved magnetic anisotropy, which is essential to stable 2D magnetic ordering. The mixed termination-induced anisotropy leads to robust Ising ferromagnetism with an out-of-plane easy axis over the full range of relevant termination compositions for Janus Mn2N. Janus Cr2C, V2C, and Ti2C were found to be robustly antiferromagnetic. Our results provide a strategy for exploiting asymmetric surface functionalization to achieve room-temperature nanoscale magnetism under ambient conditions in MXenes with currently available synthesis techniques.
Collapse
Affiliation(s)
- Nathan C Frey
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Arkamita Bandyopadhyay
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Hemant Kumar
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Babak Anasori
- Department of Materials Science and Engineering, and A.J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Yury Gogotsi
- Department of Materials Science and Engineering, and A.J. Drexel Nanomaterials Institute , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Vivek B Shenoy
- Department of Materials Science and Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|