1
|
Hakim K, Dupuis R, Bichara C, Pellenq RJM. Pressure and temperature diagram of C60 from atomistic simulations. J Chem Phys 2024; 161:094501. [PMID: 39225521 DOI: 10.1063/5.0213022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Although widely studied experimentally in the 1990s, the structure and properties of low-dimensional or high-pressure phases of fullerenes have recently been re-examined. Remarkably, recent experiments have shown that transparent, nearly pure amorphous sp3-bonded carbon phases can be obtained by heating a C60 molecular crystal at a high pressure. With the additional aim of testing the ability of three classical carbon potentials reactive empirical bond order, environment-dependent interatomic potential, and reactive force-field to reproduce these results, we investigate the details of the structural transformations undergone by fullerene crystals over a wide range of pressures and temperatures. All the potentials tested show that the initial polymerization of fullerenes is accompanied by negative thermal expansion, albeit in slightly different ranges. However, more significant differences in structural and mechanical properties are observed in the amorphous phases, in particular the sp3 carbon fraction and the existence of layered amorphous carbon. Overall, these results indicate to which extent classical reactive potentials can be used to explore phase transitions over a wide range of pressures and temperatures.
Collapse
Affiliation(s)
- Karim Hakim
- CINaM, CNRS and Aix-Marseille Univ., Campus de Luminy, 13288 Marseille, Cedex 09, France
| | | | - Christophe Bichara
- CINaM, CNRS and Aix-Marseille Univ., Campus de Luminy, 13288 Marseille, Cedex 09, France
| | - Roland J-M Pellenq
- IEM, CNRS and University of Montpellier, 300 Av. du Professeur Jeanbrau, 34090 Montpellier, France
| |
Collapse
|
2
|
Yan X, Xia M, Liu H, Zhang B, Chang C, Wang L, Yang G. An electron-hole rich dual-site nickel catalyst for efficient photocatalytic overall water splitting. Nat Commun 2023; 14:1741. [PMID: 36990992 DOI: 10.1038/s41467-023-37358-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Photocatalysis offers an attractive strategy to upgrade H2O to renewable fuel H2. However, current photocatalytic hydrogen production technology often relies on additional sacrificial agents and noble metal cocatalysts, and there are limited photocatalysts possessing overall water splitting performance on their own. Here, we successfully construct an efficient catalytic system to realize overall water splitting, where hole-rich nickel phosphides (Ni2P) with polymeric carbon-oxygen semiconductor (PCOS) is the site for oxygen generation and electron-rich Ni2P with nickel sulfide (NiS) serves as the other site for producing H2. The electron-hole rich Ni2P based photocatalyst exhibits fast kinetics and a low thermodynamic energy barrier for overall water splitting with stoichiometric 2:1 hydrogen to oxygen ratio (150.7 μmol h-1 H2 and 70.2 μmol h-1 O2 produced per 100 mg photocatalyst) in a neutral solution. Density functional theory calculations show that the co-loading in Ni2P and its hybridization with PCOS or NiS can effectively regulate the electronic structures of the surface active sites, alter the reaction pathway, reduce the reaction energy barrier, boost the overall water splitting activity. In comparison with reported literatures, such photocatalyst represents the excellent performance among all reported transition-metal oxides and/or transition-metal sulfides and is even superior to noble metal catalyst.
Collapse
Affiliation(s)
- Xiaoqing Yan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, P.R., China
| | - Mengyang Xia
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, P.R., China
| | - Hanxuan Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, P.R., China
| | - Bin Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, P.R., China
| | - Chunran Chang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, P.R., China
| | - Lianzhou Wang
- School of Chemical Engineering, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guidong Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049, Xi'an, P.R., China.
| |
Collapse
|
3
|
Wang S, Zhao R, Zheng T, Lu Z, Fang Y, Xie H, Wang W, Xue W. Rational Design of a Low-Dimensional and Metal-free Heterostructure for Efficient Water Oxidation: DFT and Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12562-12569. [PMID: 36191260 DOI: 10.1021/acs.langmuir.2c02011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A nitrogen-doped fullerene dimer is synthesized and compounded with multi-walled carbon nanotubes (MWCNTs) to construct a low-dimensional and metal-free 0D-1D heterostructure for electrocatalytic water oxidation. The (C59N)2/MWCNTs heterostructure exhibits a highly efficient performance, as verified by both first-principles density functional theory and experimental studies. The *O → *OOH process is confirmed as the rate-determining step of water oxidation. The negatively charged N-doping leads to electronic redistribution and intermolecular charge transfer and thus reduces the uphill free energies of intermediates on the (C59N)2/MWCNTs interface. Therefore, the (C59N)2/MWCNTs heterostructure has great potential to emit light and heat in metal-free-based electrocatalytic water oxidation.
Collapse
Affiliation(s)
- Shuai Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Rui Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Tian Zheng
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang621010, China
| | - Zheng Lu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yuan Fang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou310003, China
| | - Wenjian Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Weidong Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| |
Collapse
|
4
|
Fu R, Xu Y, Qiao S, Liu Y, Lin Y, Li Y, Zhang Z, Wu J. Size-dependent melting of onion-like fullerenic carbons: a molecular dynamics and machine learning study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:425402. [PMID: 35931061 DOI: 10.1088/1361-648x/ac877e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The melting thermodynamic characteristics of 2- to 20-layered onion-like fullerenes (OLFn) (C60@C240to C60@···@C6000···@C24000) are comprehensively explored using first-principles-based ReaxFF atomistic simulations and random forest machine learning (RF ML). It is revealed that OLFnshows lower thermal stability than the counterparts of single-walled fullerenes (SWFn). The melting point of SWFnincreases monotonically with increasing size, whereas for OLFn, an unusual size-dependent melting point is observed; OLFnwith intermediate size shows the highest melting point. For small OLFn, the melting occurs from the inner to the outer, whereas for large OLFn, it nucleates from the inner to the outer and to intermediate fullerenes. The melting and erosion behaviors of both SWFnand OLFnare mainly characterized by the nucleation of non-hexagons, nanovoids, carbon chains and emission of C2. RF ML model is developed to predict the melting points of both SWFnand OLFn. Moreover, the analysis of the feature importance reveals that the Stone-Wales transformation is a critical pathway in the melting of SWFnand OLFn. This study provides new insights and perspectives into the thermodynamics and pyrolysis chemistry of fullerenic carbons, and also may shed some lights onto the understanding of thermally-induced erosion of carbon-based resources and spacecraft materials.
Collapse
Affiliation(s)
- Ran Fu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yihua Xu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shi Qiao
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yisi Liu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yanwen Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yang Li
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, No.58 Yanta Road, Xi'an 710054, People's Republic of China
| | - Zhisen Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jianyang Wu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| |
Collapse
|
5
|
Chronopoulos DD, Stangel C, Scheibe M, Čépe K, Tagmatarchis N, Otyepka M. Electrocatalytic activity for proton reduction by a covalent non-metal graphene-fullerene hybrid. Chem Commun (Camb) 2022; 58:8396-8399. [PMID: 35792707 PMCID: PMC9319450 DOI: 10.1039/d2cc02272a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022]
Abstract
A non-metal covalent hybrid of fullerene and graphene was synthesized in one step via fluorographene chemistry. Its electrocatalytic performance for the hydrogen evolution reaction and durability was ascribed to intrahybrid charge-transfer phenomena, exploiting the electron-accepting properties of C60 and the high conductivity and large surface area of graphene.
Collapse
Affiliation(s)
- Demetrios D Chronopoulos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | - Magdalena Scheibe
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
| | - Klára Čépe
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc 779 00, Czech Republic.
- IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
6
|
Ogundipe TO, Shen L, YanShi, Lu Z, Yan C. Recent Advances on Bimetallic Transition Metal Phosphides for Enhanced Hydrogen Evolution Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Taiwo Oladapo Ogundipe
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
- University of Chinese Academy of Sciences Beijing 100039 P.R. China
| | - Lisha Shen
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| | - YanShi
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| | - Zhuoxin Lu
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| | - Changfeng Yan
- Hydrogen Production and Utilization Group Guangzhou Institute of Energy Conversion Chinese Academy of Sciences Guangzhou 510640 P.R. China
- CAS Key Lab of Renewable Energy Guangdong Key Lab of New and Renewable Energy Research and Development Guangzhou 510640 P.R. China
| |
Collapse
|
7
|
Computational Analysis of Strain-Induced Effects on the Dynamic Properties of C60 in Fullerite. CRYSTALS 2022. [DOI: 10.3390/cryst12020260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A hybrid discrete-continuous physical and mathematical model is used to study what deformation characteristics cause the rolling effect of C60 fullerene in a fullerite crystal. The interaction of fullerene atoms with surrounding molecules is described using a centrally symmetric interaction potential, in which the surrounding molecules are considered as a spherical surface of uniformly distributed carbon atoms. The rotational motion of fullerene is described by the Euler dynamic equations. The results of a numerical study of the influence of the rate, magnitude, and direction of strain on the dynamic characteristics of the rotational and translational motion of C60 fullerene in a crystalline fragment are presented.
Collapse
|
8
|
Zhang D, Wang Z, Wu X, Shi Y, Nie N, Zhao H, Miao H, Chen X, Li S, Lai J, Wang L. Noble Metal (Pt, Rh, Pd, Ir) Doped Ru/CNT Ultra-Small Alloy for Acidic Hydrogen Evolution at High Current Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104559. [PMID: 34802189 DOI: 10.1002/smll.202104559] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Indexed: 06/13/2023]
Abstract
There are still great challenges to prepare high-efficiency Ru-based catalysts that are superior to Pt/C under acidic conditions, especially under high current conditions. In this work, a series of surfactant-free noble metal doped Ru/CNT (M-Ru/CNT, M = Pt, Rh, Pd, Ir, CNT stands for carbon nanotube) are prepared by microwave reduction method in 1 minute with ≈3-3.5 nm in size for the first time. In 0.5 m H2 SO4 , the overpotential of Pt-Ru/CNT (Pt: 4.94 at %) is only 12 mV. What's more, it also has much larger electrochemical surface area and intrinsic activity than Pt/C. Pt-Ru/CNT still has an ultra-small overpotential under high current density (113 mV at 500 mA cm-2 , 155 mV at 1000 mA cm-2 ). At the same time, it possesses excellent stability regardless of high current or low current after the durability test of 100 h. Theoretical calculation also deeply reveals that Ru is the main adsorption site of H+ . The comparison of the electronic structure of a series of noble metals adjusted by Ru shows that Pt has the most excellent Gibbs free energy of the adsorbed hydrogen and promotes the desorption of the product.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zuochao Wang
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xueke Wu
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yue Shi
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Nanzhu Nie
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Huan Zhao
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hongfu Miao
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xilei Chen
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shaoxiang Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-Chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
9
|
Yu W, Gao Y, Chen Z, Zhao Y, Wu Z, Wang L. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63855-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Samantara AK, Das JK, Ratha S, Jena NK, Chakraborty B, Behera JN. Enhanced Oxygen Evolution Reaction with a Ternary Hybrid of Patronite-Carbon Nanotube-Reduced Graphene Oxide: A Synergy between Experiments and Theory. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35828-35836. [PMID: 34301146 DOI: 10.1021/acsami.1c09927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work reports the hybridization of patronite (VS4) sheets with reduced graphene oxide and functionalized carbon nanotubes (RGO/FCNT/VS4) through a hydrothermal method. The synergistic effect divulged by the individual components, i.e., RGO, FCNT, and VS4, significantly improves the efficiency of the ternary (RGO/FCNT/VS4) hybrid toward the oxygen evolution reaction (OER). The ternary composite exhibits an impressive electrocatalytic OER performance in 1 M KOH and requires only 230 mV overpotential to reach the state-of-the-art current density (10 mA cm-2). Additionally, the hybrid shows an appreciable Tafel slope with a higher Faradaic efficiency (97.55 ± 2.3%) at an overpotential of 230 mV. Further, these experimental findings are corroborated by the state-of-the-art density functional theory by presenting adsorption configurations, the density of states, and the overpotential of these hybrid structures. Interestingly, the theoretical overpotential follows the qualitative trend RGO/FCNT/VS4 < FCNT/VS4 < RGO/VS4, supporting the experimental findings.
Collapse
Affiliation(s)
- Aneeya K Samantara
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Jiban K Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Satyajit Ratha
- School of Basic Science, Indian Institute of Technology Bhubaneswar, Arugul, Jatni, Odisha 752050, India
| | - Naresh K Jena
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-75120, Sweden
| | - Brahmananda Chakraborty
- Homi Bhabha National Institute, Mumbai 400094, India
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - J N Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
11
|
Saha J, Subramaniam C. Thermochemically nanostructured off-stoichiometric Ti0.2Al1.8C4O5 nanowires as robust electrocatalysts for hydrogen evolution from corrosive acidic electrolyte. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Liu Y, Zhong K, Liu C, Yang Y, Zhao Z, Li T, Lu Q. Size-controlled Ag quantum dots decorated on binder-free hierarchical NiCoP films by magnetron sputtering to boost electrochemical performance for supercapacitors. NANOSCALE 2021; 13:7761-7773. [PMID: 33871518 DOI: 10.1039/d1nr00815c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This paper reports novel binder-free and self-supported electrodes of hierarchical nickel-cobalt phosphide (NiCoP) films decorated with size-controlled Ag quantum dots by magnetron sputtering (Ag/NiCoP). Ag quantum dots with an average particle size of 7.90 nm uniformly distribute over the nanosheet-assembled architecture of NiCoP films. Benefitting from the good ohmic contact in the interfaces between Ag quantum dots and NiCoP nanosheets, Ag/NiCoP exhibits an ultrahigh specific capacitance of 6150 mF cm-2 (3050 F g-1 at 1 A g-1) higher than the 3445 mF cm-2 (1722 F g-1 at 1 A g-1) of bare NiCoP at 2 mA cm-2. The specific areal capacitance has been increased by 78.5% after introducing Ag quantum dots. 34% capacitance retention rate is achieved while the current density increases from 2 to 30 mA cm-2. The cycling stability displays a remarkable capacitance retention of 73% for 4000 cycles at 30 mA cm-2. These boosted electrochemical performances are mainly attributed to the synergistic effects of enough electroactive sites, high electronic conductivity, and easy electrolyte ion diffusion. An asymmetric supercapacitor is fabricated using hierarchical Ag/NiCoP as the positive electrode and activated carbon as the negative electrode. The supercapacitor delivers an energy density of 0.254 mW h cm-2 (1.81 mW h cm-3) at a power density of 1.88 mW cm-2 (13.4 mW cm-3). At a power density of 18.8 mW cm-2 (134 mW cm-3), an energy density of 0.115 mW h cm-2 (0.82 mW h cm-3) can still be maintained. This study provides an avenue to design a novel generation of supercapacitors for energy storage devices.
Collapse
Affiliation(s)
- Yang Liu
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| | - Ke Zhong
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| | - Caixia Liu
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| | - Yu Yang
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| | - Zhe Zhao
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| | - Tiantian Li
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| | - Qingshan Lu
- School of Physical Science and Technology & Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
13
|
Li SH, Qi MY, Tang ZR, Xu YJ. Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis. Chem Soc Rev 2021; 50:7539-7586. [PMID: 34002737 DOI: 10.1039/d1cs00323b] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal phosphides (MPs) with unique and desirable physicochemical properties provide promising potential in practical applications, such as the catalysis, gas/humidity sensor, environmental remediation, and energy storage fields, especially for transition metal phosphides (TMPs) and MPs consisting of group IIIA and IVA metal elements. Most studies, however, on the synthesis of MP nanomaterials still face intractable challenges, encompassing the need for a more thorough understanding of the growth mechanism, strategies for large-scale synthesis of targeted high-quality MPs, and practical achievement of functional applications. This review aims at providing a comprehensive update on the controllable synthetic strategies for MPs from various metal sources. Additionally, different passivation strategies for engineering the structural and electronic properties of MP nanostructures are scrutinized. Then, we showcase the implementable applications of MP-based materials in emerging sustainable catalytic fields including electrocatalysis, photocatalysis, mild thermocatalysis, and related hybrid systems. Finally, we offer a rational perspective on future opportunities and remaining challenges for the development of MPs in the materials science and sustainable catalysis fields.
Collapse
Affiliation(s)
- Shao-Hai Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, New Campus, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
14
|
Puente Santiago AR, Fernandez‐Delgado O, Gomez A, Ahsan MA, Echegoyen L. Fullerenes as Key Components for Low‐Dimensional (Photo)electrocatalytic Nanohybrid Materials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alain R. Puente Santiago
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Olivia Fernandez‐Delgado
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Ashley Gomez
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Md Ariful Ahsan
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Luis Echegoyen
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| |
Collapse
|
15
|
Puente Santiago AR, Fernandez‐Delgado O, Gomez A, Ahsan MA, Echegoyen L. Fullerenes as Key Components for Low‐Dimensional (Photo)electrocatalytic Nanohybrid Materials. Angew Chem Int Ed Engl 2020; 60:122-141. [PMID: 33090642 DOI: 10.1002/anie.202009449] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Alain R. Puente Santiago
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Olivia Fernandez‐Delgado
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Ashley Gomez
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Md Ariful Ahsan
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| | - Luis Echegoyen
- Department of Chemistry and Biochemistry University of Texas at El Paso 500 West University Avenue El Paso Texas 79968 USA
| |
Collapse
|
16
|
Construction of echinoids-like MoS2@NiS2 electrocatalyst for efficient and robust water oxidation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Seo KJ, Kim DE. Molecular dynamics investigation on the nano-mechanical behaviour of C 60 fullerene and its crystallized structure. NANOSCALE 2020; 12:9849-9858. [PMID: 32342956 DOI: 10.1039/d0nr00584c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
C60 fullerene has been utilized in various applications, including low friction and wear coatings, due to its unique molecular structure. In this work, molecular dynamics simulations were conducted to assess the nano-mechanical behaviour of a single C60 fullerene and its crystallized structure. A single C60 model and a model of a face-centred cubic structured C60 crystal with a one-unit-cell thickness were prepared for compression and unloading simulations based on the adaptive intermolecular reactive empirical bond-order potential for carbon. Force-displacement curves and molecule-averaged virial stresses were obtained during the simulation. The models applied during the compression and unloading processes were visualized to confirm the deformation behaviour. Both the single and crystal C60 models showed a perfectly reversible deformation before the point of force decrease that occurred during compression. In particular, the face-centred cubic structure of the crystal C60 model was severely altered during compression before the individual C60 molecules experienced permanent deformation. The maximum values of the normal virial stress in the compression direction before the permanent deformation of the molecules were almost same for both the single and crystallized models.
Collapse
Affiliation(s)
- Kuk-Jin Seo
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | | |
Collapse
|
18
|
Shao W, He C, Zhou M, Yang C, Gao Y, Li S, Ma L, Qiu L, Cheng C, Zhao C. Core–shell-structured MOF-derived 2D hierarchical nanocatalysts with enhanced Fenton-like activities. JOURNAL OF MATERIALS CHEMISTRY A 2020. [DOI: 10.1039/c9ta12099h] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The fabricated core–shell-structured MOF-derived 2D nanocatalysts with Co/Co-Nx co-doping N-CNTs enhance Fenton-like activities for the water remediation of benzene-derived contaminants.
Collapse
|
19
|
Liu X, Deng S, Xiao D, Gong M, Liang J, Zhao T, Shen T, Wang D. Hierarchical Bimetallic Ni-Co-P Microflowers with Ultrathin Nanosheet Arrays for Efficient Hydrogen Evolution Reaction over All pH Values. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42233-42242. [PMID: 31657897 DOI: 10.1021/acsami.9b15194] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing efficient nonprecious catalysts with pH-universal hydrogen evolution reaction (HER) performance is of importance for boosting water splitting. Herein, a self-template strategy based on Ni-Co-glycerates is developed to prepare bimetallic Ni-Co-P microflowers with ultrathin nanosheet arrays. The highly porous core-shell structure gives rise to affluent mass transfer channels and availably prevents the aggregation of nanosheets, while the ultrathin nanosheets are favorable for producing abundant active sites. Besides, the produced CoP/NiCoP heterostructure in the bimetallic Ni-Co-P catalyst has excellent HER performance in a wide pH range. The as-prepared catalyst shows low potentials of 90, 157, and 121 mV to deliver a current density of 10 mA cm-2 in 0.5 M H2SO4, 0.5 M PBS, and 1 M KOH solution, respectively. Meanwhile, negligible overpotential decay is achieved in the polarization curves after a long-term stability determination. This work supplies a promising strategy for developing pH-universal HER electrocatalysts based on solid-state metal alkoxides.
Collapse
Affiliation(s)
- Xupo Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Shaofeng Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Mingxing Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Jianing Liang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Tonghui Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| |
Collapse
|
20
|
Yang C, Zhou M, He C, Gao Y, Li S, Fan X, Lin Y, Cheng F, Zhu P, Cheng C. Augmenting Intrinsic Fenton-Like Activities of MOF-Derived Catalysts via N-Molecule-Assisted Self-catalyzed Carbonization. NANO-MICRO LETTERS 2019; 11:87. [PMID: 34138053 PMCID: PMC7770684 DOI: 10.1007/s40820-019-0319-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/29/2019] [Indexed: 05/23/2023]
Abstract
To overcome the ever-growing organic pollutions in the water system, abundant efforts have been dedicated to fabricating efficient Fenton-like carbon catalysts. However, the rational design of carbon catalysts with high intrinsic activity remains a long-term goal. Herein, we report a new N-molecule-assisted self-catalytic carbonization process in augmenting the intrinsic Fenton-like activity of metal-organic-framework-derived carbon hybrids. During carbonization, the N-molecules provide alkane/ammonia gases and the formed iron nanocrystals act as the in situ catalysts, which result in the elaborated formation of carbon nanotubes (in situ chemical vapor deposition from alkane/iron catalysts) and micro-/meso-porous structures (ammonia gas etching). The obtained catalysts exhibited with abundant Fe/Fe-Nx/pyridinic-N active species, micro-/meso-porous structures, and conductive carbon nanotubes. Consequently, the catalysts exhibit high efficiency toward the degradation of different organic pollutions, such as bisphenol A, methylene blue, and tetracycline. This study not only creates a new pathway for achieving highly active Fenton-like carbon catalysts but also takes a step toward the customized production of advanced carbon hybrids for diverse energy and environmental applications.
Collapse
Affiliation(s)
- Chengdong Yang
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Mi Zhou
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yun Gao
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Shuang Li
- Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Xin Fan
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yi Lin
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Fei Cheng
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Puxin Zhu
- Textile Institute, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
21
|
Yu C, Xu F, Luo L, Abbo HS, Titinchi SJ, Shen PK, Tsiakaras P, Yin S. Bimetallic Ni‒Co phosphide nanosheets self-supported on nickel foam as high-performance electrocatalyst for hydrogen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.150] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Yang D, Hou W, Lu Y, Zhang W, Chen Y. Scalable synthesis of self-assembled bimetallic phosphide/N-doped graphene nanoflakes as an efficient electrocatalyst for overall water splitting. NANOSCALE 2019; 11:12837-12845. [PMID: 31214672 DOI: 10.1039/c9nr03614h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In order to achieve clean hydrogen energy through overall water splitting, it is vitally important but still challenging to develop highly efficient and low-cost electrocatalysts to replace the noble metal-based electrocatalysts (e.g. Pt- and Ru-based catalysts). To address this issue, herein, we present a facile and scalable spray drying and subsequent phosphorization approach to synthesize iron-cobalt bimetallic nanoflakes encapsulated in N-doped graphene (FCP@NG). The optimized FCP@NG exhibits excellent performance in the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting. It demonstrates remarkable performance in the HER and superior activity in the OER, even outperforming the state-of-the-art RuO2 catalyst. Being employed as both the cathode and anode on nickel foams, this FCP@NG hybrid demonstrates promising performance in overall water splitting with a very low potential of 1.63 V to deliver a current density of 10 mA cm-2, which is superior among most of the recently reported transition-metal-based catalysts and comparable to the commercial Pt/RuO2 cell. The outstanding electrocatalytic performance of FCP@NG is attributed to a synergistic effect of its bi-metallization, unique nanoflake structure and conductive N-doped graphene encapsulation. This work provides a scalable and low-cost strategy to synthesize nonprecious and bi-functional transition-metal-based catalysts with unique nanoarchitecture and outstanding catalytic performance for overall water splitting.
Collapse
Affiliation(s)
- Dongxu Yang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Wenqiang Hou
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Yingjiong Lu
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Wanli Zhang
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Yuanfu Chen
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
23
|
Liang Z, Qu C, Zhou W, Zhao R, Zhang H, Zhu B, Guo W, Meng W, Wu Y, Aftab W, Wang Q, Zou R. Synergistic Effect of Co-Ni Hybrid Phosphide Nanocages for Ultrahigh Capacity Fast Energy Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802005. [PMID: 31139557 PMCID: PMC6469242 DOI: 10.1002/advs.201802005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/03/2018] [Indexed: 05/28/2023]
Abstract
Rational design of metal compounds in terms of the structure/morphology and chemical composition is essential to achieve desirable electrochemical performances for fast energy storage because of the synergistic effect between different elements and the structure effect. Here, an approach is presented to facilely fabricate mixed-metal compounds including hydroxides, phosphides, sulfides, oxides, and selenides with well-defined hollow nanocage structure using metal-organic framework nanocrystals as sacrificial precursors. Among the as-synthesized samples, the porous nanocage structure, synergistic effect of mixed metals, and unique phosphide composition endow nickel cobalt bimetallic phosphide (NiCo-P) nanocages with outstanding performance as a battery-type Faradaic electrode material for fast energy storage, with ultrahigh specific capacity of 894 C g-1 at 1 A g-1 and excellent rate capability, surpassing most of the reported metal compounds. Control experiments and theoretical calculations based on density functional theory reveal that the synergistic effect between Ni and Co in NiCo-P can greatly increase the OH- adsorption energy, while the hollow porous structure facilitates the fast mass/electron transport. The presented work not only provides a promising electrode material for fast energy storage, but also opens a new route toward structural and compositional design of electrode materials for energy storage and conversion.
Collapse
Affiliation(s)
- Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery MaterialsDepartment of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| | - Chong Qu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery MaterialsDepartment of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| | - Wenyang Zhou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery MaterialsDepartment of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| | - Ruo Zhao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery MaterialsDepartment of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| | - Hao Zhang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery MaterialsDepartment of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| | - Bingjun Zhu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery MaterialsDepartment of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| | - Wenhan Guo
- Beijing Key Laboratory for Theory and Technology of Advanced Battery MaterialsDepartment of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| | - Wei Meng
- Beijing Key Laboratory for Theory and Technology of Advanced Battery MaterialsDepartment of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| | - Yingxiao Wu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery MaterialsDepartment of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| | - Waseem Aftab
- Beijing Key Laboratory for Theory and Technology of Advanced Battery MaterialsDepartment of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| | - Qian Wang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery MaterialsDepartment of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery MaterialsDepartment of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
24
|
Wen L, Yu J, Xing C, Liu D, Lyu X, Cai W, Li X. Flexible vanadium-doped Ni 2P nanosheet arrays grown on carbon cloth for an efficient hydrogen evolution reaction. NANOSCALE 2019; 11:4198-4203. [PMID: 30806413 DOI: 10.1039/c8nr10167a] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tuning the electronic structure, morphology, and structure of electrocatalysts is of great significance to achieve a highly active and stable hydrogen evolution reaction (HER). Herein, combining hydrothermal and low temperature phosphidation methods, V-doped Ni2P nanosheet arrays grown on carbon cloth (V-Ni2P NSAs/CC) were successfully prepared for the HER. It is found that the prepared V-Ni2P NSAs/CC exhibits preeminent performance for the HER. Specifically, it only requires an overpotential of 85 mV to achieve a current density of 10 mA cm-2 in 1.0 M KOH solution. Moreover, the V-Ni2P NSAs/CC shows superior electrochemical stability, maintaining its HER performance up to 3000 cyclic voltammetry cycles. This work affords a guiding strategy for the synthesis of a high-performance and stable electrocatalyst for the HER.
Collapse
Affiliation(s)
- Lulu Wen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Jiang Z, Ren J, Li Y, Zhang X, Zhang P, Huang J, Du C, Chen J. Low-cost high-performance hydrogen evolution electrocatalysts based on Pt-CoP polyhedra with low Pt loading in both alkaline and neutral media. Dalton Trans 2019; 48:8920-8930. [DOI: 10.1039/c9dt01118h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Low-cost Pt-CoP hollow polyhedra exhibited prominent performance for the HER in both basic and neutral solutions.
Collapse
Affiliation(s)
- Zhigang Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| | - Jincan Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| | - Yapeng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| | - Pengfei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| | - Junlin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P.R. China
| |
Collapse
|